别看本文没有几页纸,本着把经典的文多读几遍的想法,把它彩印出来看,没想到效果很好,比在屏幕上看着舒服.若用蓝色的笔圈出重点,这篇文章中几乎要全蓝.字字珠玑. Reducing the Dimensionality of Data with Neural Networks G.E. Hinton and R.R. Salakhutdinov  摘要 训练一个带有很小的中间层的多层神经网络,可以重构高维空间的输入向量,实现从高维数据到低维编码的效果.(原文为high-dimensional data…
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值…
Deeplearning原文作者Hinton代码注解 Matlab示例代码为两部分,分别对应不同的论文: . Reducing the Dimensionality of data with neural networks ministdeepauto.m backprop.m rbmhidlinear.m . A fast learing algorithm for deep belief net mnistclassify.m backpropclassfy.m 其余部分代码通用. %%%%…
原文链接:http://www.ncbi.nlm.nih.gov/pubmed/16873662/ G. E. Hinton* and R. R. Salakhutdinov .   Science. 2006 Jul 28;313(5786):504-7. Abstract High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a…
这篇paper来做什么的? 用神经网络来降维.之前降维用的方法是主成分分析法PCA,找到数据集中最大方差方向.(附:降维有助于分类.可视化.交流和高维信号的存储) 这篇paper提出了一种非线性的PCA 的推广,通过一个小的中间层来重构高维输入向量,训练一个多层神经网络.利用一个自适应的.多层的编码网络(Deep autoencoder networks),达到降维的目的. 这种降维方法,比主成分分析法PCA(principal compenent analysis)效果要好的多. 在这两种网络…
通过训练多层神经网络可以将高维数据转换成低维数据,其中有对高维输入向量进行改造的网络层.梯度下降可以用来微调如自编码器网络的权重系数,但是对权重的初始化要求比较高.这里提出一种有效初始化权重的方法,允许自编码器学习低维数据,这种降维方式比PCA表现效果更好. 降维有利于高维数据的分类.可视化.通信和存储.简单而普遍使用的降维方法是PCA(主要成分分析)--首先寻找数据集中方差最大的几个方向,然后用数据点在方向上的坐标来表示这条数据.我们将PCA称作一种非线性生成方法,它使用适应性的.多层"编码&…
2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心训练算法,为训练深度神经网络带来了希望.如果说Hinton 2006年发表在<Science>杂志上的论文[1]只是在学术界掀起了对深度学习的研究热潮,那么近年来各大巨头公司争相跟进,将顶级人才从学术界争抢到工业界,则标志着深度学习真正进入了实用阶段,将对一系列产品和服务产生深远影响,成为它们背后…
****************内容加密中********************…
https://cloud.tencent.com/developer/article/1118159 http://ruder.io/multi-task/ https://arxiv.org/abs/1706.05098 两种深度学习 MTL 方法 1.Hard 参数共享 在实际应用中,通常通过在所有任务之间共享隐藏层,同时保留几个特定任务的输出层来实现. 共享 Hard 参数大大降低了过拟合的风险.这很直观:我们同时学习的工作越多,我们的模型找到一个含有所有任务的表征就越困难,而过拟合我们…
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 本文原作者:G.E.Hinton* and R.S.Salakhutdionv 原文地址:http://www.cs.toronto.edu/~hinton/science.pdf 为了重构高维的输入向量,可以通过训练一个具有小的中间层的多层的神经网络,从而把高位数据转换成低维的代码.梯度下降法能够用于这…
简介: 这是一片发表在TPAMI上的文章,可以看见作者有余凯(是百度的那个余凯吗?) 本文提出了一种3D神经网络:通过在神经网络的输入中增加时间这个维度(连续帧),赋予神经网络行为识别的功能. 相应提出了一种3D卷积,对三幅连续帧用一个3D卷积核进行卷积(可以理解为用三个二维卷积核卷积三张图). 3D神经网络结构图: input—>H1 神经网络的输入为7张大小为60*40的连续帧,7张帧通过事先设定硬核(hardwired kernels)获得5种不同特征:灰度.x方向梯度.y方向梯度.x方向…
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propagation 5.3 神经网络总结 接上一篇4. Neural Networks (part one).本文将先定义神经网络的代价函数,然后介绍逆向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结. 5.1 cost func…
1. 深层神经网络(Deep L-layer neural network ) 2. 前向传播和反向传播(Forward and backward propagation) 3. 总结 4. 深层网络中的前向传播(Forward propagation in a Deep Network) 向量化实现过程可以写成: 注:这里只能用一个显示for循环,l 从 1 到 L,然后一层接着一层去计算. 如何减少bug 4.1 核对矩阵的维数(Getting your matrix dimensions…
colah's blog Blog About Contact Neural Networks, Manifolds, and Topology Posted on April 6, 2014 topology, neural networks, deep learning, manifold hypothesis Recently, there’s been a great deal of excitement and interest in deep neural networks beca…
第四周:深层神经网络(Deep Neural Networks) 深层神经网络(Deep L-layer neural network) 目前为止我们学习了只有一个单独隐藏层的神经网络的正向传播和反向传播,还有逻辑回归,并且你还学到了向量化,这在随机初始化权重时是很重要.本周所要做的是把这些理念集合起来,就可以执行你自己的深度神经网络. 严格上来说逻辑回归也是一个一层的神经网络,浅与深仅仅是指一种程度.有一个隐藏层的神经网络,就是一个两层神经网络.当我们算神经网络的层数时,我们不算输入层,我们只…
第一周:深度学习引言(Introduction to Deep Learning) 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告.但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注. 深度学习做的非常好的一个方面就是读取 X 光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其它一些方面.如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,本课程将帮助你做到这一点.当你完成 cousera 上面的这一系列专项课…
Note This section assumes the reader has already read through Classifying MNIST digits using Logistic Regression and Multilayer Perceptron. Additionally, it uses the following new Theano functions and concepts: T.tanh, shared variables, basic arithme…
The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David Masko 摘要 本论文从实验的角度调研了训练数据的不均衡性对采用CNN解决图像分类问题的性能影响.CIFAR-10数据集包含10个不同类别的60000个图像,用来构建不同类间分布的数据集.例如,一些训练集中包含一个类别的图像数目与其他类别的图像数目比例失衡.用这些训练集分别来训练一个CNN,度量其得…
When a golf player is first learning to play golf, they usually spend most of their time developing a basic swing. Only gradually do they develop other shots, learning to chip, draw and fade the ball, building on and modifying their basic swing. In a…
This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning based problems, one of which was Image Upscaling. This post will show some preliminary results, discuss our model and its possible applications to Flipboa…
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent Neural Networks叫做时间递归神经网络,与之对应的还有一个结构递归神经网络(recursive neural network).本文讨论的是前者. RNN是一种可以预测未来(在某种程度上)的神经网络,可以用来分析时间序列数据(比如分析股价,预测买入点和卖出点).在自动驾驶中,可以预测路线…
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一种表现形式.在一个数据集中,模式有很多不同的表现形式,不管是在传统的机器学习训练的过程,还是是深度学习的训练过程,本质上都是在进行模式提取. 而从信息论的角度来看,模式提取也可以理解为一种信息压缩过程,通过将信息从一种形式压缩为另一种形式.压缩的过程不可避免会造成信息丢失. 笔者这里列举几种典型的体…
话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补! 第5章 Neural Networks 在第3章和第4章,我们已经学过线性的回归和分类模型,这些模型由固定的基函数(basis functions)的线性组合组成.这样的模型具有有用的解析和计算特性,但是因为维度灾难(the curse of dimensionali…
转自 http://blog.csdn.net/xingzhedai/article/details/53144126 更多参考:http://blog.csdn.net/mafeiyu80/article/details/51446558 http://blog.csdn.net/caimouse/article/details/70225998 http://kubicode.me/2017/05/15/Deep%20Learning/Understanding-about-RNN/ RNN…
Diffusion-Convolutional Neural Networks (传播-卷积神经网络)2018-04-09 21:59:02 1. Abstract: 我们提出传播-卷积神经网络(DCNNs),一种处理 graph-structured data 的新模型.随着 DCNNs 的介绍,我们展示如何从 graph structured data 中学习基于传播的表示(diffusion-based representations),然后作为节点分类的有效基础.DCNNs 拥有多个有趣…
Planar data classification with a hidden layer Welcome to the second programming exercise of the deep learning specialization. In this notebook you will generate red and blue points to form a flower. You will then fit a neural network to correctly cl…
本文翻译自 SATYA MALLICK 的  "Neural Networks : A 30,000 Feet View for Beginners" 原文链接: https://www.learnopencv.com/neural-networks-a-30000-feet-view-for-beginners/ 翻译:coneypo 在这篇文章中,我会向大家简要的介绍下 Neural Networks / 神经网络: 可以作为 Machine Learning / 机器学习 和 D…
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Layers to Convolutional Layers ConvNet Architectures Layer Patterns Layer Sizing Patterns C…
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络. 话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补!基本是笔记+翻译,主要是自己写一下以后好翻阅. PRML第5章介绍了神经网络neu…