tf.Variable】的更多相关文章

在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要. ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个…
一般这样用tf.get_variable(): v = tf.get_variable(name, shape, dtype, initializer) 下面内容来源于 http://blog.csdn.net/u012436149/article/details/53696970 当我们需要共享变量的时候,需要使用tf.get_variable() 使用tf.Variable时,如果检测到命名冲突,系统会自己处理.使用tf.get_variable()时,系统不会处理冲突,而会报错,例子: i…
https://blog.csdn.net/lanchunhui/article/details/61712830 https://www.cnblogs.com/silence-tommy/p/7029561.html 二者的主要区别在于: tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias): 声明时,必须提供初始值: 名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初…
1. tf.Variable与tf.get_variable tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.Variable的功能基本等价…
每次调用 tf.Variable() 都会产生一个新的变量,变量名称是一个可选参数,运行命名相同,如果命名冲突会根据命名先后对名字进行处理, tf.get_variable()的变量名称是必填参数,tf.get_variable()会根据这个参数去创建或者获取变量.遇到重命名的变量创建且变量名没有设置成共享变量(所谓的共享是指在同一参数空间下的共享,参数空间名称不一样就不能共享了)时,就会报错.…
tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. 1. tf.Variable(创建变量)与tf.get_variable(创建变量 或 复用变量) TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 变量可以通过tf.Varivale来创建.当tf.get_variable用于变量创建时,和tf.…
刷课过程中思考到Variable和Tensor之间的区别,尝试发现在如下代码中: a = tf.Variable(tf.ones(1)) b = tf.add(a,tf.ones(1)) 1 2 a是Variable,而b是Tensor.发现自己对Variable和Tensor之间的区分了解不多,所以搜索了一下,记录自己的思考,欢迎指教. Variable是可更改的(mutable),而Tensor是不可更改的.一个直接的例子就是Tensor不具有assign函数,而Variable含有. py…
https://blog.csdn.net/qq_22522663/article/details/78729029 1. tf.Variable与tf.get_variabletensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的. 当然,变量也可以通过…
tf.Variable __init__( initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=None, import_scope=None ) 功能说明: 维护图在执行过程中的状态信息,例如神经网络权重值的变化. 参数列表: 参数名 类型 说…
tf.Variable(<initial - value>,name=<optional - name>) 此函数用于定义图变量.生成一个初始值为initial - value的变量. tf.get_variable(name,shape,dtype,initializer,trainable) 此函数用于定义图变量.获取已经存在的变量,如果不存在,就新建一个 参数: name:名称 shape:数据形状. dtype:数据类型.常用的tf.float32,tf.float64等数…