问题:斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加.特别指出:0不是第一项,而是第零项. 方法:Python2.7.9 a=0 b=…
//C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleTest { class Program { static void Main(string[] args) { OutPut4(); } //方法1,使用while循环 public static vo…
program fbnq;{输出菲波拉契数列的前10项} var a:..] of integer; i:integer; begin a[]:=; a[]:=; do a[i]:=a[i-]+a[i-]; do begin write(a[i],' '); end; readln; end.…
#include<stdio.h> int main() { int n; while(scanf("%d",&n)!=EOF){ int x1,x2,i,x; x1=; x2=; ) printf("); ) printf("1 1"); ) { printf("%d %d",x1,x2); ;i<=n;i++) { x=x1+x2; printf(" %d",x); x1=x2; x2=…
刚开始学Python的时候,记得经常遇到打印斐波那契数列了,今天玩玩使用四种办法打印出斐波那契数列 方法一:使用普通函数 def feibo(n): """ 打印斐波那契数列 :param n: 输入要打出多少项 """ count = 0 # 定义一个计数器 num1, num2 = 0, 1 # 定义前2项 0,1 while count < n: print(num1, end=" ") num1, num2 =…
#打印斐波那契数列的第101项 a = 1 b = 1 for count in range(99): a,b = b,a+b else: print(b) 方法2: #打印斐波那契数列的第101项 a = 1 b = 1 for i in range(2,101): if i == 100: print(a+b) b += a a = b-a…
day16 --------------------------------------------------------------- 实例024:斐波那契数列II 题目 有一分数序列:2/1,3/2,5/3,8/5,13/8,21/13-求出这个数列的前20项之和. 分析:就是斐波那契数列的后一项除以前一项,于是写了两个函数 1 def fbs(num): 2 a = [0,1] 3 if num<=2: 4 return a 5 else: 6 for i in range(1,int(…
斐波那契数列:1.1.2.3.5.8.13.21.34.…… 函数: 使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1. for循环: 从底层向上运算, a(0)+a(1)->a(1) //第0个数字+第1个数字=第2个数字a(1)+a(1)->a(2) //第1个数字+第2个数字=第3个数字a(2)+a(3)->a(5) //第2个数字+第3个数字=第4个数字······a(n-1)+a(n-2)->a(n) 因此,在循环中只要…
1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <…
1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可.   Input 输入1个数n(1 <…