[HAOI2018]奇怪的背包】的更多相关文章

[BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\)的重量,而多个物品也只要\(gcd\)就好了. 现在的问题转变成了有多少个集合\(S\),满足\(S+\{P\}\)中所有数的\(gcd\)是\(w\)的因数.那么实际上就是直接令\(a[i]'=gcd(a[i],P)\),然后选出一个集合使得它是\(gcd(P,w)\)的因数. 考虑对于\(P\…
[HAOI2018]奇怪的背包 \(solution:\) 首先,这一道题目的描述很像完全背包,但它所说的背包总重量是在模P意义下的,所以肯定会用到数论.我们先分析一下,每一个物品可以放无数次,可以达到的背包重量其实就是所有\(gcd(a[i],P)\)的倍数. 这一点和天天爱跑步简直神似!因为天天爱跑步中每一个人也可以走无数步,跑到环形(就是模意义下). 但是这道题目还可以加入多种物品,我们不难发现,如果加入i和j两种物品,它所能达到的重量其实只是在gcd中多加了一个,就是所有\(gcd(a[…
P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P\)取模后的结果. 现在小\(C\)有\(n\)种体积不同的物品,第\(i\)种占用体积为\(V_i\),每种物品都有无限个. 他会进行\(q\)次询问,每次询问给出重量\(w_i\),你需要回答有多少种放入物品的方案,能将一个初始为空的背包的重量变为\(w_i\).注意,两种方案被认为是不同的,…
BZOJ5302: [Haoi2018]奇怪的背包 https://lydsy.com/JudgeOnline/problem.php?id=5302 分析: 方程\(\sum\limits_{i=1}^nx_ia_i=y\)有整数解的条件是\(gcd|y\). 对于这道题,我们可以直接把\(P\)当成一个可以提供负值 or 可以抵消负值的存在. 那么这道题的条件就是\(gcd(d,P)|q_i\),其中\(d\)是选出那些数的\(gcd\). 问题缩小到了\(P\)的约数这个范围,最多\(14…
题目 小 CC 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 PP ,当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对 PP 取模后的结果. 现在小 CC 有 nn 种体积不同的物品,第 ii 种占用体积为 V_iV i ​ ,每种物品都有无限个. 他会进行 qq 次询问,每次询问给出重量 w_iw i ​ ,你需要回答有多少种放入物品的方 案,能将一个初始为空的背包的重量变为 w_iw i ​ .注意,两种方案被认为是不同的, 当且仅当放入物品的种类不同,而与每种物品放…
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5302 对于一个物品,设它体积为v,那么,在背包参数为p的情况下,它能达到gcd(v,p)的倍数的重量 对于两个物品,设它们的体积为v1和v2,那么,在背包参数为p的情况下,他能达到gcd(v1,v2,p)的倍数的重量 对于每个物品,我们记下它的gcd(v,p),问题变为给定一个x,求有多少个v的集合,是集合内所有元素的gcd能被x整除 我们设dp[i][j]表示p的前i个约数有多少种…
Description Solution 首先 \(v_1,v_2,v_3...v_n,P\) 能够构成的最小数是 \(gcd(P,v_1,v_2,v_3...v_n)\) 然后 \(gcd(P,v_1,v_2,v_3...v_n)|w_i\) 则可以构成 \(w_i\) 所以我们直接背包一下就可以了,设 \(m\) 为 \(P\) 的约数个数,\(m\) 最多是 \(n^{\frac{1}{3}}\) 那么复杂度就是 \(O(n*m*logP)\) 容易发现如果 \(gcd(v_i,P)=gc…
题目分析: 首先打个暴力求一下$10^9$以内因子最多的数的因子个数,发现只有$1344$个. 由于有$ax+by=k*(a,b)$和2017年noip的结论,所以我们可以发现对于任意多个数$a_1,a_2,a_3,...,a_n$他们能组成的数是$k$倍的最大公约数,$k$任取.我们发现如果$gcd%p$不是$w$的因子那么不行,否则可行.所以把$a$数组全部模$p$,再归类为每个因子,再处理相互之间能构建出来的$gcd$,再用莫比乌斯函数做一下容斥,再处理出每个因子的因子和,再对每个输入的$…
题目 暴力\(dp\)好有道理啊 于是我们来个反演吧 考虑一个体积序列\(\{v_1,v_2,...v_n\}\)能凑成\(w\)的条件 显然是 \[v_1x_1+v_2x_2+...+v_nx_n\equiv w(mod\ P)\] 根据贝祖定理,我们知道上面的同余方程有解的条件是 \[gcd(v_1,v_2...v_n,P)|w\] 现在题目转化成了求有多少个子集满足\(gcd(v_1,v_2..v_n,P)|w\)了 显然一个暴力\(dp\)记录一下当前\(gcd\)转移就好了,由于\(g…
由裴蜀定理,子集S有解当且仅当gcd(S,P)|w. 一个显然的dp是设f[i][j]为前i个数gcd为j的选取方案.注意到这里的gcd一定是P的约数,所以状态数是n√P的.然后可以通过这个得到gcd是j约数的选取方案.复杂度O(n√PlogP). 考虑优化.注意到每个数取gcd后的贡献仅与其和P的gcd有关,而这又一定是P的约数,所以本质不同的物品数量也是O(√P).那么上面的dp就可以优化到O(PlogP)了.当然这里的P是P的约数个数的平方,这显然是远远达不到P的. #include<io…
由裴蜀定理得,一个集合S能得到w当且仅当gcd(S+{P})|w. 于是f[i][j]表示前i个物品gcd为j的方案数,发现gcd一定是P的因数,故总复杂度$O(n\sqrt{P}\log P)$(需要二分或者map). 又发现,将所有数a[i]全都变成gcd(a[i],P)对答案是没有影响的,于是物品数也变成了P的因子个数级别. 故总复杂度为P的因子个数的平方*log P. #include<cstdio> #include<algorithm> #define rep(i,l,…
题面 传送门 题解 好神仙的思路啊--orzyyb 因为不限次数,所以一个体积为\(V_i\)的物品可以表示出所有重量为\(\gcd(V_i,P)\)的倍数的物品,而所有物品的总和就是这些所有的\(\gcd\) 那么我们把每个\(V_i\)转化为\(\gcd(V_i,P)\),把\(w_i\)转化为\(\gcd(w_i,P)\),题目就可以变成问有多少种选择\(V_i\)的方法使\(V_i\)的\(\gcd\)为\(w_i\)的因子 据说当\(P\)很大的时候\(\sigma(P)\)大概只有\…
正解:数论+dp 解题报告: 传送门! 首先看到这题,跳无数次,自然而然可以想到之前考过好几次了的一个结论——如果只考虑无限放置i,它可以且仅可以跳到gcd(p,v[i]) 举一反三一下,如果有多个i,表示成a[i]好了,那就一定是能跳到gcd(p,v[a[1]],v[a[2]],..,v[a[n]]),因为这个太长了后面单一个gcd就指的它 挺显然的这儿不证明了QAQ 然后这儿就相当于是问有多少种a[i]的方案能满足gcd|gcd(p,w) 然后因为多组询问,显然考虑能不能预处理一个f[i]:…
题解 复杂度怎么算也要2s的题怎么0.5s就跑完了,迷啊 这个题简直算完复杂度不敢写,写了就赚飞了好吧 根据裴蜀定理,显然选出的数和P的gcd是w的约数 我们考虑枚举\(P\)的约数,上限当然是\(\sqrt{P}\)个,写个暴力搜一下发现最多也就13000个左右 然后我们把每个数处理成\(gcd(a_i,P)\) 重标号所有约数 那么我们写个\(n^2\)的\(dp[i][j]\)表示处理到第\(i\)个约数,然后这些数的\(gcd\)是第\(j\)个约数 然后再\(n^2\)将\(val[j…
去冬令营转了一圈发现自己比别人差根源在于刷题少,见过的套路少(>ω<) 于是闲来无事把历年省选题做了一些 链接放的都是洛谷的,bz偷懒放的也是链接 AM.T1 奇怪的背包 Problem HAOI-2018奇怪的背包 Solution 暴力 \(60\),加上送的 \(10\) 有 \(70\) ,暴力进队 首先在模意义下倍数能表达的东西--裴蜀定理!即 \(\{kx\bmod p\}=\{k\cdot \gcd(x,p)\bmod p\}\),所以输入的 \(V_i\) 可以先与 \(P\)…
题解: 题目相对其他省难一点 不过弱省省选知识点都这么集中的么.. 4道数学题... 1.[HAOI2018]奇怪的背包 这题考场做就gg了... 其实我想到了那个性质.. 就是这个一定要是gcd的倍数 但是我傻逼的觉得这个不对.. 因为xi都要>=0 然后就看题解.. 仔细想了一下 这可是模意义下啊?? 你要是负数你一直加p答案不是不变的么... 然后有了这个性质我们考虑dp 直接$f[i][j]$表示考虑了前i个数,gcd为j这个复杂度比较gg 我们发现j一定是p的因数,所以离散化一下(ha…
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf\)的题目,以及\(loj\)上的一些省的集训题目,还有\(uoj\)的各种\(round\)的题目. 大块大块的做题记录就在这里记录一下,省选后再来看结果,至少努力过就不曾后悔了不是吗? 首先先是省选题的记录,然后有比赛的记录,做到每周至少完成一整场\(CF\)或者\(AtCoder\)比赛的题解…
Problem A: 青春野狼不做理性小魔女的梦 题意 给一个长为\(k\)的序列\(A\)和一个数\(n\),给出一部分\(A_i\)的值,另一部分为\(-1\),代表不知道这个\(A_i\)是多少,求满足\(\sum\limits_{i=1}^kA_ix_i\equiv 1\pmod m\)有整数解条件下的方案数,数是这么填的\(1\le m\le n,1 \le A_i\le m\),填\(m\)和不知道的\(A_i\) 说明 对\(10^9+7\)取模 对所有数据\(1\le k\le…
入门题 : [Luogu1441]砝码称重 , [NOIP2015]子串 [AHOI2009]中国象棋 , 详见代码 [HNOI2007]梦幻岛宝珠 , 详见代码 [NOIP2012]开车旅行 , 没有代码... 预处理出\(ga[i] , gb[i]\)代表从城市\(i\)出发\(A\)或\(B\)走一步会到达的城市 设\(f[i][j][k]\)表示从城市\(j\)出发 , 两人共驾驶\(2^i\)天 , \(k\)先开车 , 最终会到达的城市 设\(da[i][j][k]\)表示从城市\(…
无聊了开一套省选题刷刷--u1s1 感觉三个题都不错,难度也挺有梯度,是一道标准的省选难度的题(话说 CSP 前你刷省选题干嘛/ts/ts) 小 C 珂海星 T1:P4495 [HAOI2018]奇怪的背包(基础数论) 一开始看错题了,以为是不可做题( 根据斐蜀定理,假设取出的体积集合为 \(S\),那么可以拼出 \(w\) 的充要条件是 \(\gcd_{x\in S}\gcd(x,P)\mid\gcd(w,P)\),不难发现 \(\gcd(x,P),\gcd(w,P)\) 肯定是 \(P\)…
这套题是 dy, wearry 出的.学长好强啊,可惜都 \(wc\) 退役了.. 话说 wearry 真的是一个计数神仙..就没看到他计不出来的题...每次考他模拟赛总有一两道毒瘤计数TAT 上午的官方题解可以看 dy0607 的博客,写的挺详细的. 「HAOI2018」奇怪的背包 题意 小C非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 \(P\) ,当他向这个背包内放入若干个物品后,背包的重量是物品总体积对 \(P\) 取模后的结果. 现在小C有 \(n\) 种体积不同的物品,第…
题解 怎么看都不像是个背包,直到我看了题解→_→, 第一次碰到这么奇怪的背包= = 定一个滚动数组$F_i$, $i$表示机器$a$用了$i$的时间, $F_i$表示机器$b$用了$F_i$的时间, 然后就直接可以进行滚动转移了... 真是开眼界啊QuQ 代码 #include<cstring> #include<algorithm> #include<cstdio> #define rd read() #define rep(i,a,b) for(register i…
没考多好......并不知道该写什么...... 那就写写流水账...... DAY 0 上午到机房,众人全是打板子or颓废的....然后我打完板子去打印了个奇怪的背包九讲.... 然后大巴到德州东,高铁到秦皇岛..... 高铁上一直在用一个接触不良的插头和一个接触不良的线给mp3充电....... 到了地方拎着行李去试机......然后过了一会就结束了233 吃饭,发现燕大的食堂翻新了...买饭很是麻烦..... 然后走了快两站地到了宾馆..... 围观一堆路痴把燕大的两个大门搞混.....…
前几次集训都没有记录每天的点滴……感觉缺失了很多反思的机会. 这次就从今天开始吧!不能懈怠,稳步前进! 2017/10/1 今天上午进行了集训的第一次考试…… 但是这次考试似乎是近几次我考得最渣的一次? 今天考试第一题是高精度+数学,第二题是图论计数大分类讨论,第三题是状压的树归 第一题看到之后自信的以为可以做出来,结果一直打到了还剩下半个多小时才打完. 还是too young too simple......今天这真的是致命的失误,后面再怎么考试也不能孤注一掷了 以及今天cdq基本上做完了(虽…
FJOI2016省队训练滚粗记 2016.07.03~2016.07.06(Day1~5) 在学校期末考.因为才省选二试too young too simple爆蛋了所以下半个学期只能滚回去读文化课,省队训练的前5天和期末考冲突,只能去读文化课... 2016.07.07(Day 6) 早上讲莫比乌斯反演,几乎没听懂...至少了解了一下概念,大概直到μ这个函数是干嘛的,还有就是第一次学线性筛(以前太弱都是写埃式筛).早上还讲了一些奇怪的东西,比如杜教筛什么的...反正就是都是讲数论. 下午上机测…
目录 @description@ @solution@ @accpeted code@ @details@ @description@ Miranda 准备去市里最有名的珠宝展览会,展览会有可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的右买不到.展览中总共有 N 种珠宝,每种珠宝都只有一个,对于第 i 种珠宝,它的售价为 Ci 万元,对 Miranda 的吸引力为 Vi.Miranda 总共可以从银行中取出…
补了一场Edu round. A : Marketing Scheme 水题 #include <cstdio> #include <algorithm> typedef long long ll; int T,l,r; template <typename T> inline void read(T &x){ x = 0; char ch = getchar(); int f = 1; for(;ch < '0' || ch > '9'; ch =…
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=203 思路:先求点0到每个点的最短距离,dijkstra算法,然后就是01背包了 我奇怪的是100*1000000的时间复杂度居然没有超时! 代码如下: #include "stdio.h" #include "string.h" #define N 105 #define INF 0x3fffffff bool mark[N]; int dist[N];…
一个变形的完全背包 题是第一次团队赛的热身题...看别人博客看到这道题忽然就不会了 然后想了半天还是没想出来...上oj找了提交排名..发现自己弄出来的奇怪的办法居然用时最短... 问装m最低要多少的v 想法是枚举v 从1开始无限往后 然后就是普通的完全背包 一旦dp[k]超过了m 立即break 然后输出v #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int…
题目链接:http://poj.org/problem?id=2063 今天果然是卡题的一天.白天被hdu那道01背包的变形卡到现在还没想通就不说了,然后晚上又被这道有个不大也不小的坑的完全背包卡了好久.这题主要是说让你选择不同的债券(每种债券的费用和年利率的属性),然后n年后使得本金最大,如果仅仅是问一年的话就是个裸完全背包的题了,不过它是n年,每年得到的总利息都会加入到本金中变为下一年的本金,知道了这个后就很好处理了,在这道题里每年变化的本金就是背包容量,然后债券那两个属性就是物品的费用(o…