时间序列分析工具箱——tibbletime】的更多相关文章

目录 时间序列分析工具箱--tibbletime tibbletime 的用途 加载包 数据 教程:tibbletime 初始化一个 tbl_time 对象 时间序列函数 翻译自<Demo Week: Tidy Time Series Analysis with tibbletime> 原文链接:www.business-science.io/code-tools/2017/10/26/demo_week_tibbletime.html 注意:由于软件包的版本变化,部分代码被修改,文字有删减…
目录 时间序列分析工具箱--tidyquant tidyquant 的用途 加载包 tq_get:获得数据 从 Yahoo! Finance 获得股票数据 从 FRED 获得经济数据 使用 tq_transmute 和 tq_mutate 转换数据 tq_transmute tq_mutate 可用函数 时间序列分析工具箱--tidyquant 本文翻译自<Demo Week: class(Monday) <- tidyquant> 原文链接:http://www.business-sc…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/81977856 作者:徐瑞龙.量化分析师,R语言中文社区专栏作者 博客专栏: https://www.cnblogs.com/xuruilong100 本文翻译自<Demo Week: Tidy Forecasting with sweep> 原文链接: www.business-science.io/code-tools/2017/10/25/d…
目录 时间序列分析工具箱-- h2o + timetk h2o 的用途 加载包 安装 h2o 加载包 数据 教程:h2o + timetk,时间序列机器学习 时间序列机器学习 最终的胜利者是... 翻译自<Demo Week: Time Series Machine Learning with h2o and timetk> 原文链接:https://www.business-science.io/code-tools/2017/10/28/demo_week_h2o.html 文字和代码略有…
目录 时间序列分析工具箱--timetk timetk 的主要用途 加载包 数据 timetk 教程: PART 1:时间序列机器学习 PART 2:转换 翻译自<Demo Week: Time Series Machine Learning with timetk> 原文链接:www.business-science.io/code-tools/2017/10/24/demo_week_timetk.html 时间序列分析工具箱--timetk timetk 的主要用途 三个主要用途: 时间…
时间序列分析必须建立在预处理的基础上…… 今天看了一条新闻体会到了网络日志的重要性…… 指数平滑法(Exponential Smoothing,ES)是布朗(Robert G..Brown)所提出,布朗.认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延:他认为最近的过去态势,在某种程度上会持续的未来,所以将较大的权数放在最近的资料. ARIMA模型全称为差分自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记A…
简介 在商业应用中,时间是最重要的因素,能够提升成功率.然而绝大多数公司很难跟上时间的脚步.但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来.不要担心,本文并不会讨论时间机器,讨论的都是很实用的东西. 本文将要讨论关于预测的方法.有一种预测是跟时间相关的,而这种处理与时间相关数据的方法叫做时间序列模型.这个模型能够在与时间相关的数据中,寻到一些隐藏的信息来辅助决策. 当我们处理时序序列数据的时候,时间序列模型是非常有用的模型.大多数公司都是基于时间序列数据来分析第二年的销售量,网站流…
          题记:毕业一年多天天coding,好久没写paper了.在这动荡的日子里,也希望写点东西让自己静一静.恰好前段时间用python做了一点时间序列方面的东西,有一丁点心得体会想和大家分享下.在此也要特别感谢顾志耐和散沙,让我喜欢上了python. 什么是时间序列 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值.在这里需要强调一点的是,时间序列分析并不是关于时间的回归,它主要是研究自身的变化规律的(这里不考虑含外生变量的时间序列). 为…
http://blog.csdn.net/pipisorry/article/details/52209377 其它时间序列处理相关的包 [P4J 0.6: Periodic light curve analysis tools based on Information Theory] [p4j github] pandas时序数据文件读取 dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')data = pd.read_c…
简介 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值.预测未来股价走势是一个再好不过的例子了.在本文中,我们将看到如何在递归神经网络的帮助下执行时间序列分析.我们将根据过去5年的股价预测苹果公司之后的股价. 数据集 我们将使用从2013年1月1日到2017年12月31日的苹果股票价格作为训练集,2018年1月的价格作为测试集.所以,为了评估算法的效果,也要下载2018年1月的实际股票价格. 打开包含五年数据的苹果股票价格的训练文件后可以看到如下几列:“…
笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢   构造检验统计量进行假设检验:单位根检验adfTest()--fUnitRoots包 2.纯随机性检验.白噪声检验(Box.test(data,type,lag=n)--lag表示输出滞后n阶的白噪声检验统计量…
"春节假期是难得的读书充电的时间."--来自某boss.假期能写多少算多少,一个是题目中的这本书,另一个是<python核心编程>中的高级部分,再一个是拖着的<算法导论>. ------------------------------------------------------ 一.时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型:基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报.通常我们不…
时间序列分析之ARIMA模型预测__R篇 之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观.现在记录一下如何用R分析ARIMA模型. 1. 处理数据 1.1. 导入forecast包 forecast包是一个封装的ARIMA统计软件包,在默认情况下,R没有预装forecast包,因此需要先安装该包 > install.packages("forecast') 导入依赖包zoo,再导入forecast包 > library("zoo&…
1 时间序列与时间序列分析 在生产和科学研究中,对某一个或者一组变量  进行观察测量,将在一系列时刻  所得到的离散数字组成的序列集合,称之为时间序列. 时间序列分析是根据系统观察得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法.时间序列分析常用于国民宏观经济控制.市场潜力预测.气象预测.农作物害虫灾害预报等各个方面. 2 时间序列建模基本步骤 获取被观测系统时间序列数据: 对数据绘图,观测是否为平稳时间序列:对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列: 经过第…
时间序列分析是作时间序列数据预测的一个重要部分,由于此次实验室竞赛也用到了时间序列分析,就在此说一下平稳性分析以及非平稳处理的方法:   1.判断平稳性         1.1平稳性的定义          (1)严平稳            严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计特性都不会随着时间的推移而发生变化时,该序列才能被认为平稳. 满足如下条件的序列称为严平稳序列:          (2)宽平稳  宽平稳是使用序列的特征统计量来定义的一种平稳性.它认为序列的…
R语言实现金融数据的时间序列分析及建模 一 移动平均    移动平均能消除数据中的季节变动和不规则变动.若序列中存在周期变动,则通常以周期为移动平均项数.移动平均法可以通过数据显示出数据长期趋势的变动规律.   R可用filter()函数做移动平均.用法:filter(data,filter,sides) 1.简单移动平均   简单移动平均就是将n个观测值的平均数作为第(n 1)/2个的拟合值.当n为偶数时,需进行二次移动平均.简单移动平均假设序列长期趋势的斜率不变.    以我国1992到20…
<时间序列分析——基于R>王燕,读书笔记 笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢   构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包 2.纯随机性检验.白噪声检验(Box.test(data,type,lag=n)…
https://www.zhihu.com/topic/19582125/top-answershttps://wenku.baidu.com/search?word=spss&ie=utf-8&lm=0&od=0 SPSS 18.0由17个功能模组组成: Base System 基础程式 Advanced Models 高等统计模组(GEE/GLM/存活分析) Regression Models 进阶回归模组 Custom Tables 多变量表格 Forecasting 时间序…
一.作业要求 自选时间序列完成时间序列的建模过程,要求序列的长度>=100. 报告要求以下几部分内容: 数据的描述:数据来源.期间.数据的定义.数据长度. 作时间序列图并进行简单评价. 进行时间序列的平稳性检验,得出结论,不平稳时间序列要进行转化,最终平稳. 进行自相关.偏自相关图,得出模型的阶数. 对时间序列模型进行拟合,得出参数的估计值. 检验模型的残差项,判断模型是否合格,给出模型最终的估计结果. 应用建立的时间序列模型进行预测. 二.数据描述 数据来源:国家统计局——统计数据——月度数据…
纪念一下,在心心念念想从会计本科转为数据分析师快两年后,近期终于迈出了使用R的第一步,在参考他人的例子前提下,成功写了几行代码.用成本的角度来说,省去了部门去买昂贵的数据分析软件的金钱和时间,而对自己来说,则是在数据分析又迈出了一步,往经济宽裕又迈出了一步,往财务自由又迈出了一步,不得不写个随笔纪念一下. 以及,有时候,入门真的没有想象中困难,关键是要找到入门的方法,一窍通,百窍通. 以下为代码.简而言之就是写了一个时间序列预测的代码,包括完整的数据导入,数据处理和数据输出过程.加载了forec…
(图片来自百度) 数据 分析数据第一步还是套路------画图 数据看上去比较平整,但是由于数据太对看不出具体情况,于是将只取前300个数据再此画图 这数据看上去很不错,感觉有隐藏周期的意思 代码 #coding:utf-8 import csv import matplotlib.pyplot as plt def read_csv_data(aim_list_1, aim_list_2, file_name): i = 0 csv_file = csv.reader(open(file_na…
pandas最基本的时间序列类型就是以时间戳(TimeStamp)为index元素的Series类型. 生成日期范围: pd.date_range()可用于生成指定长度的DatetimeIndex.参数可以是起始结束日期,或单给一个日期,加一个时间段参数.日期是包含的. 默认情况下,date_range会按天计算时间.可以通过freq参数进行更改,如“BM”代表business end of month 时期及算术运算: 时间戳与时期间的相互转换 以时间戳和以时期为index的Series和Da…
昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的. 第一步.对原始数据进行分析 一.ARIMA预测时间序列 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求.但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值. 方差不变的正态分布.即使指数平滑法对时间序列连续数值之间相关性没有要求,在某种情况下,我们可以通过考虑数据之间的相关性来创建更好的预测模型.自回归移动平均模型( ARIMA) 包含一个…
本章介绍时间序列中的基本概念.特别地,介绍随机过程.均值.方差.协方差函数.平稳过程和自相关函数等概念. 2.1时间序列与随机过程 关于随机过程的定义,本科上过相关课程,用的是<应用随机过程>清华林元烈老师的书.第1章第5节: 上面的定义比较清楚明白.按照本书上的说法,随机变量序列就是一个随机过程,换句话说,在每一个t时刻,所研究的量都是一个随机变量.随机过程完整的概率结构是由每个时刻的有限联合概率分布族决定的,幸运的是,联合分布中的大部分信息可以通过均值.方差和协方差等加以描述,而不用去直接…
ggplot2绘制 arima诊断图 library(ggfortify) autoplot(acf(gold[,2], plot = FALSE)) ggtsdiag(auto.arima(gold[,2])) 将数据改为时间格式 gold <- as.xts(gold[, 2], order.by = gold[, 1]) 设置时间格式 绘制时间趋势图 gdp <- ts((0.001 * (gdp[, 2])), frequency = 4, start = c(1992, 1)) pl…
0. 以时间作为序列的索引 >> from datetime import datetime >> dates = [datetime(2011, 1, i) for i in [2, 5, 7, 8, 10, 12]] >> ts = pd.Series(np.random.randn(6), index=dates) >> ts 2011-01-02 -1.157516 2011-01-05 0.755876 2011-01-07 0.299113 20…
https://zhuanlan.zhihu.com/p/88528732 在各种经营分析报告中,我们常常会看到YTD,YOY这样的统计指标,这样的数据计算并不难,尤其是在PowerBI中,因为有时间智能函数的帮助,大大简化了这些计算,从而快速满足定期的报告需求. 下面就给你列出这些常用统计数据的度量值,帮你快速掌握各种期间数据的算法. 如果对时间智能函数不熟悉,可以先看看这篇文章: 一文帮你掌握时间智能函数 假设数据模型为一张订单表和一张对应的日期表,并已经建立了基础度量值: 收入 = SUM…
http://www.cnblogs.com/bicoffee/p/3838049.html…
https://blog.csdn.net/snowdroptulip/article/details/79125912 https://www.cnblogs.com/runner-ljt/p/5245080.html http://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf https://www.cnblogs.com/en-heng/p/9202654.html…
数据来源: R语言自带 Nile 数据集(尼罗河流量) 分析工具:R-3.5.0 & Rstudio-1.1.453 #清理环境,加载包 rm(list=ls()) library(forecast) library(tseries) #趋势查看 plot(Nile) #平稳性检验 #自相关图 acf(Nile) #偏相关图 pacf(Nile) #也可以直接用tsdisplay查看 tsdisplay(Nile) #单位根检验 adf.test(Nile) 从自相关图上看,自相关系数没有快速衰…