R语言 线性回归】的更多相关文章

回归分析是一个广泛使用的统计工具,用于建立两个变量之间的关系模型. 这些变量之一称为预测变量,其值通过实验收集. 另一个变量称为响应变量,其值来自预测变量. 在线性回归中,这两个变量通过一个等式相关联,其中这两个变量的指数(幂)是1.数学上,当绘制为图形时,线性关系表示直线.任何变量的指数不等于1的非线性关系产生曲线. 线性回归的一般数学方程为 - y = ax + b R 以下是使用的参数的描述 - y - 是响应变量. x - 是预测变量. a和b - 叫作系数的常数. 建立回归的步骤 一个…
0 引言 初学者,对于一些运行结果不是很清楚,所以看了一些课本和资料,这里做一个记录而已. 1 线性回归模型的结果分析 结果的解释: “call”:指出线性回归的公式 “Residuals”:之处从实际数据观测的残差 “Cofficients”:显示模型系数,以及系数的统计显著性 “R-squarted”:判决系数与调整的判决系数,用于刻画模型对数据分散的解释程度 “F”:表示模型的统计意义 2 自变量评估 下面是对自变量的评估: “Estimate”:用于显示截距与系数的推测值.这里是V4=2…
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业…
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是…
写在前面的话 按照正常的顺序,本文应该先讲一些线性回归的基本概念,比如什么叫线性回归,线性回规的常用解法等.但既然本文名为<从一个R语言案例学会线性回归>,那就更重视如何使用R语言去解决线性回归问题,因此本文会先讲案例. 线性回归简介 如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点.线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值.而我们要做的就是找出…
多元线性回归 多元线性回归模型 实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示. 为了方便计算,我们将上式写成矩阵形式: Y = XW 假设自变量维度为N W为自变量的系数,下标0 - N X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列. Y为因变量 那么问题就转变成,已知样本X矩阵以及对应的因变量Y的值,求出满足方程的W,一般不存在一个W是整个样本都能满足方程,毕竟现实中的样本有很多噪声.最一般的求解W的方式是最小…
文章来源:公众号-智能化IT系统. 回归模型有多种,一般在数据分析中用的比较常用的有线性回归和逻辑回归.其描述的是一组因变量和自变量之间的关系,通过特定的方程来模拟.这么做的目的也是为了预测,但有时也不是全部为了预测,只是为了解释一种现象,因果关系. 还是按照老风格,不说空泛的概念,以实际的案例出发. 还是先前的案例,购房信息,我们这次精简以下,这8位购房者我们只关注薪水和年龄这两个因素,信息如下: 用户ID 年龄 收入 是否买房 1 27 15W 否 2 47 30W 是 3 32 12W 否…
基本概念 利用线性的方法,模拟因变量与一个或多个自变量之间的关系.自变量是模型输入值,因变量是模型基于自变量的输出值. 因变量是自变量线性叠加和的结果. 线性回归模型背后的逻辑——最小二乘法计算线性系数 最小二乘法怎么理解? 它的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小.在这里模型就是理论值,点为观测值.使得拟合对象无限接近目标对象. 一元线性回归与多元线性回归 自变量只有一个的时候叫一元线性回归,自变量有多个时候叫多元线性回归. R语言实现 bik…
目标:利用R语言统计描绘50组实验对比结果 第一步:导入.csv文件 X <- read.table("D:abc11.csv",header = TRUE, sep = ",") 第二步:绘图 ggplot(X, aes(x = aaa, y = bbb)) + geom_point() + geom_smooth(method = "lm") + labs(x = "横坐标标题", y = "纵坐标标题&q…
本编博客继续分享简单的机器学习的R语言实现. 今天是关于简单的线性回归方程问题的优化问题 常用方法,我们会考虑随机梯度递降,好处是,我们不需要遍历数据集中的所有元素,这样可以大幅度的减少运算量. 具体的算法参考下面: 首先我们先定义我们需要的参数的Notation 上述算法中,为了避免过拟合,我们采用了L2的正则化,在更新步骤中,我们会发现,这个正则项目,对参数更新的影响 下面是代码部分: ## Load Library library(ggplot2) library(reshape2) li…