之前做了很长时间“罗辑思维”的听众,罗胖子曾经讲起过,我们这一代人该如何学习.其中,就讲到我们这个岁数,已经不可能再去从头到尾的学习一门又一门工具课程了,而是在学习某一领域时,有目的的去翻阅工具课程中的某些部分. 当时,他曾经提到了导数,那是在他研究经济变化时,而我来写这篇博文,则是在研究机器学习梯度下降算法时,利用求导来获得梯度变化. 1.导数的意义:提到了罗胖子和我所研究的领域大不相同,我们都要关注“变化率”,而导数这一概念就是用来表征曲线上某一点的变化率的. 2.求导公式:     3.偏…
BP算法从原理到实践 反向传播算法Backpropagation的python实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 博主接触深度学习已经一段时间,近期在与别人进行讨论时,发现自己对于反向传播算法理解的并不是十分的透彻,现在想通过这篇博文缕清一下思路.自身才疏学浅欢迎各位批评指正. 参考文献 李宏毅深度学习视频 The original location of the code 关于反向传播算法的用途在此不再赘述,这篇博文主要是理解形象化理解反向传播算法与python进行实…
##Linear Regression with One Variable Linear regression predicts a real-valued output based on an input value. We discuss the application of linear regression to housing price prediction, present the notion of a cost function, and introduce the gradi…
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/  Eli Bendersky's website About Archives The Softmax function and its derivative  October 18, 2016 at 05:20 Tags Math , Machine Learning The softmax function takes an N-dimens…
转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学…
import tensorflow as tf ''' 梯度:导数或偏导数 1.在什么点的导数:在点(a,b,c,w)=(1,2,3,4)点的导数 2.梯度环境 对谁求导: 对w求导 函数: y = a*w**2+b*w+c 以上三条是自动导数的必要信息 ''' ##1.什么点求导,需要创建定点张量 a = tf.constant(1.) b = tf.constant(3.) c = tf.constant(6.) w = tf.constant(2.) ##2.求导环境,对谁求导 with…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
梯度下降(gradient descent),是一种用于最优化(通常是最小化),代价函数/损失函数/目标函数/误差函数/准则,的方法. 不过,最值有时很难找到,尤其是在高维情况下,所以常常把局部最优解看作全局最优解. 1.导数 f(x)在x处的斜率. 2.临界点(critical point)/驻点(stationary point) 导数为0,包括局部极小点.局部极大点.鞍点. 3.偏导数(partial derivative) f(x)关于多维输入x的其中一维xi的导数. 4.方向导数(di…
  - Normal Map中的值 -   有没有想过,Normal Map(法线贴图)为什么看上去都是“偏蓝色”的?这是因为,在map中存储的值都是在Tangent Space(切空间)下的.比如,一根正好垂直于表面的法线向量在切空间下是(0,0,1),假如用一个char(注意不是unsigned char)来表达像素的话,该向量就会被转换为(0,0,127).这样的值无疑是“蓝色”.由于大部分的法线都不会偏移这根“标准法线”太远(比如[0.1, 0.2, 0.8]...)所以大部分像素都是“…
六.逻辑回归(Logistic Regression) 6.1 分类问题 6.2 假说表示 6.3 判定边界 6.4 代价函数 6.5 简化的成本函数和梯度下降 6.6 高级优化 6.7 多类别分类:一对多 七.正则化(Regularization) 7.1 过拟合的问题 7.2 代价函数 7.3 正则化线性回归 7.4 正则化的逻辑回归模型 第3周 六.逻辑回归(Logistic Regression) 6.1 分类问题 参考文档: 6 - 1 - Classification (8 min)…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课程例如Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,经典书籍例如<统计学习方法>等,同时也参考了大量网上的相关资料(在后面列出).    前言 机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法处理,那么搞懂什么是梯度,…
1 二分类( Binary Classification ) 逻辑回归是一个二分类算法.下面是一个二分类的例子,输入一张图片,判断是不是猫. 输入x是64*64*3的像素矩阵,n或者nx代表特征x的数量,y代表标签0/1,m代表训练集的样本总数. 本门课中:X代表所有的输入x,x按列排列,每个x是一个列向量,X的shape是( n, m ). 同理Y也按列排序,shape为( 1, m ). 2 逻辑回归( Logistic Regression ) 给定一个输入x ( 比如图像),你想得到一个…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
我们前面已经讲了如何训练稀疏自编码神经网络,当我们训练好这个神经网络后,当有新的样本输入到这个训练好的稀疏自编码器中后,那么隐藏层各单元的激活值组成的向量就可以代表(因为根据稀疏自编码,我们可以用来恢复),也就是说就是在新的特征下的特征值.每一个特征是使某一个取最大值的输入.假设隐藏层单元有200个,那么就一共有200个特征,所以新的特征向量有200维.特征显示情况在前面博客中已经给出,我们把这时候的特征称为一阶特征. 我们知道脑神经在处理问题,比如看一个图片的时候,也不只使用了一层的神经,而是…
在有监督学习中,训练样本是有类别标签的.现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 .自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 .下图是一个自编码神经网络的示例.通过训练,我们使输出 接近于输入 .当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从输入数据中发现一些有趣的结构.举例来说,假设某个自编码神经网络的输入 是一张 张8*8 图像(共64个像素)的像素灰度值,于是 n=64,其隐藏层 中有25个隐藏神经元.…
前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学习了高数,让生活中充满数学,生活会变得更有意思. 本节并不是完整的高数计算手册,仅介…
Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine Learning are offered. Arthur Samuel described it as:"the filed of study that gives computers the ability to learn without being explicitly programmed…
第二周:神经网络的编程基础(Basics of Neural Network programming) 二分类(Binary Classification) 这周我们将学习神经网络的基础知识,其中需要注意的是,当实现一个神经网络的时候,我们需要知道一些非常重要的技术和技巧.例如有一个包含 \(m\) 个样本的训练集,你很可能习惯于用一个 for 循环来遍历训练集中的每个样本,但是当实现一个神经网络的时候,我们通常不直接使用 for 循环来遍历整个训练集,所以在这周的课程中你将学会如何处理训练集.…
原文出处 https://www.cnblogs.com/lookof/p/3509970.html - Normal Map中的值 -   有没有想过,Normal Map(法线贴图)为什么看上去都是“偏蓝色”的?这是因为,在map中存储的值都是在Tangent Space(切空间)下的.比如,一根正好垂直于表面的法线向量在切空间下是(0,0,1),假如用一个char(注意不是unsigned char)来表达像素的话,该向量就会被转换为(0,0,127).这样的值无疑是“蓝色”.由于大部分的…
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法.该方法对网络中所有权重计算损失函数的梯度.这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数. 在神经网络上执行梯度下降法的主要算法.该算法会先按前向传播方式计算(并缓存)每个节点的输出值,然后再按反向传播遍历图的方式计算损失函数值相对于每个参数的偏导数. 我们将以全连接层,激活函数采用 Sigm…
原文:written by Sebastian Raschka on March 14, 2015 中文版译文:伯乐在线 - atmanic 翻译,toolate 校稿 This article offers a brief glimpse of the history and basic concepts of machine learning. We will take a look at the first algorithmically described neural network…
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propagation 5.3 神经网络总结 接上一篇4. Neural Networks (part one).本文将先定义神经网络的代价函数,然后介绍逆向传播(Back Propagation: BP)算法,它能有效求解代价函数对连接权重的偏导,最后对训练神经网络的过程进行总结. 5.1 cost func…
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不错,很适合从基础开始学习,Adrew Ng大牛写得一点都不装B,感觉非常好,另外对我们英语不好的人来说非常感谢,此教程的那些翻译者们!如余凯等.因为我先看了一些深度学习的文章,但是感觉理解得不够,一般要自己编程或者至少要看懂别人的程序才能理解深刻,所以我根据该教程的练习,一步一步做起,当然我也参考了…
Intrinsic Functions (DirectX HLSL) The following table lists the intrinsic functions available in HLSL. Each function has a brief description, and a link to a reference page that has more detail about the input argument and return type. Name Syntax D…
Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypothesis):$$h_\theta(x) = g(\theta^Tx)$$ $$g(z) = \frac{1}{1+e^{-z}}$$ 其中g(z)称为sigmoid函数,其函数图象如下图所示,可以看出预测值$y$的取值范围是(0, 1),这样对于 $h_\theta(x) \geq 0.5$, 模…
下面,将UFLDL教程中的sparseae_exercise练习中的各函数及注释列举如下 首先,给出各函数的调用关系 主函数:train.m (1)调用sampleIMAGES函数从已知图像中扣取多个图像块儿 (2)调用display_network函数,以网格的形式,随机显示多个扣取的图像块儿 (3)梯度校验,该部分的目的是测试函数是否正确,可以由单独的函数checkSparseAutoencoderCost实现 ①利用sparseAutoencoderCost函数计算网路的代价函数和梯度值…
此篇博客转自csdn的一位大牛. 中间排版出了一些问题 Intrinsic Functions (DirectX HLSL) The following table lists the intrinsic functions available in HLSL. Each function has a brief description, and a link to a reference page that has more detail about the input argument an…