1,计算机眼中的图像 我们打开经典的 Lena图片,看看计算机是如何看待图片的: 我们点击图中的一个小格子,发现计算机会将其分为R,G,B三种通道.每个通道分别由一堆0~256之间的数字组成,那OpenCV如何读取,处理图片呢,我们下面详细学习. 2,图像的加载,显示和保存 我们看看在OpenCV中如何操作: import cv2 # 生成图片 img = cv2.imread("lena.jpg") # 生成灰色图片 imgGrey = cv2.imread("lena.j…
点的表示:Point类 Point类数据结构表示二维坐标系下的点,即由其图像坐标x,y指定的2D点. 用法如下 Point point; point.x = 10; point.y = 8; 或者 Point point = Point(10, 8); Point_.Point2i.Point互相等价.Point_.Point2f互相等价. 颜色的表示:Scalar类 ==注意OpenCV默认的图片通道存储顺序是BGR,即蓝绿红,而不是RGB.== Scalar()表示具有4个元素的数组,在Op…
可以根据像素的行和列的坐标获取他的像素值.对 BGR 图像而言,返回值为 B,G,R 例如获取蓝色的像素值: img=cv2.imread('messi5.jpg')px=img[100,100]blue=img[100,100,0]  获取图像属性 图像的属性包括:行,列,通道,图像数据类型,像素数目等img.shape 可以获取图像的形状.他的返回值是一个包含行数,列数,通道数的元组. import cv2 import numpy as np img=cv2.imread('messi5.…
高斯金字塔 高斯金字塔的顶部是通过将底部图像中的连续的行和列去除得到的.顶部图像中的每个像素值等于下一层图像中 5 个像素的高斯加权平均值. 这样操作一次一个 MxN 的图像就变成了一个 M/2xN/2 的图像.所以这幅图像的面积就变为原来图像面积的四分之一. 可以得到一个分辨率不断下降的图像金字塔.我们可以使用函数cv2.pyrDown() 和 cv2.pyrUp() 构建图像金字塔. 图像的轮廓: 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同.的颜色或者灰度: 在一个二值…
形态学转换 腐蚀 img = cv2.imread() kernel = np.ones((,),np.uint8) erosion = cv2.erode(img,kernel,iterations = ) 膨胀 dilation = cv2.dilate(img,kernel,iterations = ) 先进性腐蚀再进行膨胀就叫做开运算.就像我们上面介绍的那样,它被用来去除噪声.这里我们用到的函数是 cv2.morphologyEx(). opening = cv2.morphologyE…
傅里叶变换 傅里叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅里叶变换就表示f的频谱. 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低:而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高. 对于一个正弦信号,如果它的幅度变化非常快,我们可以说他是高频信号,如果变化非常慢,我们称之为低频信号.把这种想法应用到图像中,图像那里的频率变化非常大呢?边界点…
2D卷积操作 cv.filter2D() 可以让我们对一幅图像进行卷积操作, 图像模糊(图像平滑)使用低通滤波器可以达到图像模糊的目的.这对与去除噪音很有帮助.其实就是去除图像中的高频成分(比如:噪音,边界).所以边界也会被模糊一点.(当然,也有一些模糊技术不会模糊掉边界).OpenCV 提供了四种模糊技术. 1.平均 只是用卷积框覆盖区域所有像素的平均值来代替中心元素 cv2.blur() 和 cv2.boxFilter() 来完这个任务 2.高斯模糊 把卷积核换成高斯核,方框不变,原来每个方…
几何变换 缩放 img=cv2.imread('messi5.jpg') # 下面的 None 本应该是输出图像的尺寸,但是因为后边我们设置了缩放因子 # 因此这里为 None res=cv2.resize(img,None,fx=2,fy=2,interpolation=cv2.INTER_CUBIC) #OR # 这里呢,我们直接设置输出图像的尺寸,所以不用设置缩放因子 height,width=img.shape[:2] res=cv2.resize(img,(2*width,2*heig…
颜色空间转换 对图像进行颜色空间转换,比如从 BGR 到灰度图,或者从BGR 到 HSV 等 我们要用到的函数是:cv2.cvtColor(input_image ,flag),其中 flag就是转换类型,常用的就几种转换的类型: 对于 BGR↔Gray 的转换,我们要使用的 flag 就是 cv2.COLOR_BGR2GRAY.同样对于 BGR↔HSV 的转换,我们用的 flag 就是 cv2.COLOR_BGR2HSV. 物体跟踪 通过某个颜色来跟踪一个物体, • 从视频中获取每一帧图像 •…
图像的基本操作 cv.imread()      读取图片 cv.imshow()     显示图片 cv2.imwrite()    保存图像 使用摄像头捕获实时图像 OpenCV 为这中应用提供了一个非常简单的接口 import numpy as np import cv2 cap = cv2.VideoCapture(0) while(True): # Capture frame-by-frame ret, frame = cap.read() # Our operations on th…