wide&deep在个性化排序算法中是影响力比较大的工作了.wide部分是手动特征交叉(负责memorization),deep部分利用mlp来实现高阶特征交叉(负责generalization),wide部分和deep部分joint train. Deep&Cross Network模型我们下面将简称DCN模型,对比Wide & Deep ,不需要特征工程来获得高阶的交叉特征.对比 FM 系列的模型,DCN 拥有更高的计算效率并且能够提取到更高阶的交叉特征. 一个DCN模型从嵌入…
关于算法,面太广.本系列只研究实际应用中遇到的核心算法.了解这些算法和应用,对java码农进阶是很有必要的. 对于Paxos学习论证过程中,证实一句话:有史以来学习paxos最好的地方wiki:Paxos (computer science) 目录 1.背景 2.Paxos算法 3.Muti-Paxos算法 4.Muti-Paxos在google chubby中的应用 ===============正文分割线============================ 一.背景 Paxos 协议是一…
其实本人最怕的就是算法,大学算法课就感觉老师在讲天书,而且对于前端来说,算法在实际的应用中实在是很有限.毕竟算法要依靠大量的数据为基础才能发挥出算法的效率,就浏览器那性能,......是吧,退一万步说,真的有人把这大量的数据处理业务放到前端,那我只能说这是团队和架构师的失职,不说页面应用能不能加载出来,等你靠前端算出来,用户早就跑了.所以,就目前而言,绝大部分的算法使用场景都不在前端,就那么些数据量放在那,前端使用算法除了加重代码逻辑没有更多的好处.当然话又说回来了,我也知道这是个好东西,所以我…
一.算法介绍 Kruskal算法是一种用来查找最小生成树的算法,由Joseph Kruskal在1956年发表.用来解决同样问题的还有Prim算法和Boruvka算法等.三种算法都是贪心算法的应用.和Boruvka算法不同的地方是,Kruskal 算法在图中存在相同权值的边时也有效.最小生成树是一副连通加权无向图中一棵权值最小的生成树(minimum spanning tree,简称MST).生成树的权重是赋予生成树的每条边的权重之和.最小生成树具有 (V – 1) 个边,其中 V 是给定图中的…
早前写了一篇关于A*算法的文章:<算法:Astar寻路算法改进> 最近在写个js的UI框架,顺便实现了一个js版本的A*算法,与之前不同的是,该A*算法是个双向A*. 双向A*有什么好处呢? 我们知道,A*的时间复杂度是和节点数量以及起始点难度呈幂函数正相关的. 这个http://qiao.github.io/PathFinding.js/visual/该网址很好的演示了双向A*的效果,我们来看一看. 绿色表示起点,红色表示终点,灰色是墙面.稍浅的两种绿色分别代表open节点和close节点:…
Atitit.软件中见算法 程序设计五大种类算法 1. 算法的定义1 2. 算法的复杂度1 2.1. Algo cate2 3. 分治法2 4. 动态规划法2 5. 贪心算法3 6. 回溯法3 7. 分支限界法3 1. 算法的定义  算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空…
本次LZ和各位分享GC最后两种算法,复制算法以及标记/整理算法.上一章在讲解标记/清除算法时已经提到过,这两种算法都是在此基础上演化而来的,究竟这两种算法优化了之前标记/清除算法的哪些问题呢? 复制算法 我们首先一起来看一下复制算法的做法,复制算法将内存划分为两个区间,在任意时间点,所有动态分配的对象都只能分配在其中一个区间(称为活动区间),而另外一个区间(称为空闲区间)则是空闲的. 当有效内存空间耗尽时,JVM将暂停程序运行,开启复制算法GC线程.接下来GC线程会将活动区间内的存活对象,全部复…
在前一篇文章中通过leetcode的一道题目了解了LRU算法的具体设计思路,下面继续来探讨一下另外两种常见的Cache算法:FIFO.LFU 1.FIFO算法 FIFO(First in First out),先进先出.其实在操作系统的设计理念中很多地方都利用到了先进先出的思想,比如作业调度(先来先服务),为什么这个原则在很多地方都会用到呢? 因为这个原则简单.且符合人们的惯性思维,具备公平性,并且实现起来简单,直接使用数据结构中的队列即可实现. 在FIFO Cache设计中,核心原则就是:如果…
不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmeans聚类(输入样本数据,输出样本数据的标注).实际上,高斯混和模型GMM和kmeans都是EM算法的应用. 在opencv3.0中,EM算法的函数是trainEM,函数原型为: bool trainEM(InputArray samples, OutputArray logLikelihoods=n…
Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3). 使用条件&范围通常可以在任何图中使用,包括有向图.带负权边的图. Floyd-Warshall 算法用来找出每对点之间的最短距离.它需要用邻接矩阵来储存边,这个算法通过考虑最佳子路径来得到最佳路径. 1.注意单独一条边的路径也不一定是最佳路径.2.从任意一条单边路径开始.所有两点之间的距离是边的权,或者无穷大,如果两点之间没有边相连.对于每一对顶点 u 和 v,看看是否存在一个顶点 w…