[BZOJ4558]:[JLoi2016]方(容斥+模拟)】的更多相关文章

4558: [JLoi2016]方 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 452  Solved: 205[Submit][Status][Discuss] Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点…
题目传送门 题目描述 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形上帝把我们派到了一个有N行M列的方格图上,图上一共有$(N+1)\times (M+1)$个格点,我们需要做的就是找出这些格点形成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于我们来说太难了,因为点数太多了,所以上帝删掉了这$(N+1)\times (M+1)$中的$K$个点.既然点变少了,问题也就变简单了,那么这个时候这些格点组成了多少个正方形呢?…
Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于我们来说太难了,因为点数太多 了,所以上帝删掉了这(N+1)×(M+1)中的K个点.既然点变少了,问题也就变简单了,那么这个时候这些格点组成 了多少个正方形呢? Input 第一行三个整数…
http://www.lydsy.com/JudgeOnline/problem.php?id=4558 容斥原理 全部的正方形-至少有一个点被删掉的+至少有两个点被删掉的-至少有3个点被删掉的+至少有4个点被删掉的 正方形分 正着的和斜着的 斜着的正方形卡在一个正着的正方形的边框上 一个边长为i的正方形框,恰好可以框住i个正方形(1个正着的 和 i-1个斜着的) 所以 总的正方形=  至少有一个点被删掉的: 枚举一个被删掉的点, 设它的上边有u行,下边有d行,左边有l列,右边有r列 那么以一对…
BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\)为顶点的正方形个数 + 以\(i,j,k,l\)为顶点的正方形个数,\(i,j,k,l\)都代表不同的坏点. 其实说,\(Ans=\) 至少包含\(0\)个坏点的正方形个数 - 至少包含\(1\)个坏点的正方形个数 + 至少包含\(2\)个的个数 - 至少包含\(3\)个的个数 + 至少包含\(4\…
Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于我们来说太难了,因为点数太多 了,所以上帝删掉了这(N+1)×(M+1)中的K个点.既然点变少了,问题也就变简单了,那么这个时候这些格点组成 了多少个正方形呢? Input 第一行三个整数…
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status][Discuss] Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M- 1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获 得的成绩,则称A被B碾压.在B…
[GDOI2016模拟3.16]幂 \(X\in[1,A],Y\in[1,B]\),问:\(x^y\)的不用取值个数. \(A,B\)都是\(10^9\)级别. 然后我们开搞. 首先,假设一个合法的\(x\)可以表示为\(x=\prod p_i^{q_i}\),那么令\(d=gcd(q_1,q_2...q_k)\) 假设\(d>1\),显然我们不需要单独考虑,因为它可以继续化简,我们找到最简的那个数然后去一次性处理. 那么此时所有情况都变成了\(d=1\). 此时再分两种情况讨论,因为我们现在实…
[BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获得的成绩,则称A被B碾压.在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没有被他碾压.D神查到了B神每门必修课的排名.这里的排名是指:如果B神某门课的排名为R,则表示有且…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O(N2)+O(N2+logN),(本题的 O(N3)以及拉格朗日插值法在本题的用法,本篇目不再赘述.) 定义 f[k]表示至少碾压 k个人的方案数(只考虑分数相对大小关系,不考虑实际分数大小).式子的含义是从N-1个人里面选K个人来碾压,然后对于每门科目,再从没被碾压的人里选一些出来使得B神在本科目的…
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\times C_k^{k-j}\times C_{n-1-k}^{R_i-1-(k-j)}\times g[i]\] 就是先从\(k\)人中选出\(k-j\)在\(i\)这门课比B神得分高,然后再从剩下\(n-1-k\)个人中选\(R_i-1-(k-j)\)个…
传送门 对于每个点,用单调栈求出它左右第一个比他大的位置. 然后对每个点O(logai)O(log_{a_i})O(logai​​)求出第一个拥有跟它不同二进制位的位置. 然后容斥一下就行了. 代码…
\(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DAG,有多少种合法方案.我们考虑怎么构造DAG使得方案不重不漏. 我明知道一个DAG的拓扑序是唯一确定的.所以我们按照拓扑序每次转移一个点集. \(f[s][s']\)表示 构造 已经选择的点集为\(s\),当前最后一层点集为\(s'\)的DAG 的方案数. 转移时枚举不在\(s\)中的子集\(k\)…
题面 题解 又一道全场切的题目我连题目都没看懂--细节真多-- 先考虑怎么维护仙人掌.在线可以用LCT,或者像我代码里先离线,并按时间求出一棵最小生成树(或者一个森林),然后树链剖分.如果一条边不是生成树上的边,它肯定会和树上\(u,v\)这条路径构成一个环,然后对于每条树边记录一下这条树边被覆盖过没有.如果\(u,v\)路径上有任何一条树边被覆盖过,那么就说明路径上有一条边已经在一个简单环中,这条非树边就不能加.否则就加上这条边并让这条路径上所有树边的覆盖次数加一 然后考虑期望连通块个数.首先…
题目链接: http://172.16.0.132/senior/#contest/show/2523/0 题目: 题解:(部分内容来自https://blog.csdn.net/gmh77/article/details/82947340) 首先我们容斥一下,设calc(l,r)为i∈[1,l],j∈[q,r]的方程的解的个数,显然答案等于calc(r2,r1)-calc(l1-1,r2)-calc(r1,l2-1)+calc(l1-1,l2-1) 考虑如何计算calc(l,r) 对于l和r,…
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. Input 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. O…
这道题跟另一道题很像,先看看那道题吧 巨神兵(obelisk) 题面 欧贝利斯克的巨神兵很喜欢有向图,有一天他找到了一张nnn个点mmm条边的有向图.欧贝利斯克认为一个没有环的有向图是优美的,请问这张图有多少个子图(即选定一个边集)是优美的?答案对 1,000,000,0071,000,000,0071,000,000,007 取模. n<=17n<=17n<=17 分析 这道题就是枚举拓扑序最后的点集来转移 #include <bits/stdc++.h> using na…
题目传送门(内部题138) 输入格式 输入数据第一行为两个整数$d,n$. 第二行$d$个非负整数$a_1,a_2,...,a_d$.     接下来$n$行,每行$d$个整数,表示一个坏点的坐标.数据保证坏点在网络范围内,且不会是点$A$或点$B$. 输出格式 一个整数,为从点$A$移动到点$B$的不同的路径数对$10^9+7$取模后的值. 样例 样例输入: 2 12 11 0 样例输出: 数据范围与提示 题解 先来考虑$n=0$的情况,利用组合数学,答案就是: $$ans=(\sum\lim…
题目传送门(内部题74) 输入格式 输入文件$link.in$ 第一行三个整数$n,m,k$,之间用空格隔开,$n,m$表示地图行数和列数,$k$表示每个方块周围相邻的位置(至多有$4$个,至少有$2$个,在地图的角上就是$2$个,地图的边上就是$3$个,地图内部就是$4$个)中,最多有$k$个位置是空地. 接下来$n$行,每行$m$个自然数,之间用空格隔开,描述地图. 输出格式 输出文件$link.out$ 一行一个整数表示这一步有多少种选法. 样例 样例输入1: 1 3 11 1 1 样例输…
题目传送门(内部题8) 输入格式 一行三个整数$n,m,k$. 输出格式 一行一个整数表示答案.对$998244353$取模. 样例 样例输入 3 7 3 样例输出 数据范围与提示 对于10%的数据,$1\leqslant n,m,k\leqslant 10$.对于40%的数据,$1\leqslant n,m,k\leqslant 1,000$.对于70%的数据,$1\leqslant n,m,k\leqslant {10}^5$.对于100%的数据,$1\leqslant n\leqslant…
题目背景 $Billions\ of\ lighthouses...stuck\ at\ the\ far\ end\ of\ the\ sky.$ 题目描述 平面有$n$个灯塔,初始时两两之间可以相互交流:但由于地形原因,有$m$对灯塔之间无法进行直接的交流.也就是一张完全图缺少了$m$条边.    $River$想把这$n$个灯塔连成一个环,使得$n$个等他都在环上,并且环上相邻的两个灯塔能进行直接交流.$River$想知道这样做的方案数是多少,两种方案被认为是不同的,当且仅当有两个灯塔$u…
传送门. 题解: 我果然是不擅长分类讨论,心态被搞崩了. 注意到\(m<=n-2\),意味着除了1以外的位置不可能被加到a[1]两遍. 先考虑个大概: 考虑若存在\(x,x-1,-,2\)(有序)这样的,且1要么不出现,要么出现在2的左边,那么\(a[1]=\sum_{i=1}^x a[i]\). 同样,若存在\(y,y+1,-,n\),且1要么不出现,要么出现在n的左边,那么\(a[1]=a[1]+\sum_{i=y}^n a[i]\). 开始讨论: 1.1没有出现,直接枚举x,求出最大的y的…
LINK:5.15 T2 个人感觉生成函数更无脑 容斥也好推的样子. 容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数. 容易得到转移 使用前缀和优化即可. 进一步的可以设出其生成函数 对于第i次放数字 生成函数为\(F(x)=1+x^1+x^2+...x^{n-i}\) 那么容易得到答案的生成函数为 \(G(x)=\frac{\Pi_{i=1}^{n}(1-x^i)}{(1-x)^n}\) 化简一下 然后dp出来方案数即可 可以发现这个dp是…
求出期望 所有情况很好搞 C(n+m-2,n-1). 也就是说求出所有情况的和乘以上面总方案的逆元即可. 可以发现所有情况和经过多少个障碍点有关 和所处位置无关. 简单的设f[i]表示从1,1到n,m经过i个障碍点的方案数. 可以发现求出这个数组就得到了答案. 发现每过一个障碍点 体力就会除以2 所以过掉log个障碍点 以后体力都是1. 我们只需要求出log个取值即可. 由于障碍点之间是单向关系 所以可以从左到右dp f[i][j]表示前i个点经过了j个障碍点的方案数. 转移?f[k][j-1]…
A. Reverse 菜鸡wwb又不会了..... 可以线段树优化建边,然而不会所以只能set水了 发现对于k和当前反转点固定的节点x确定奇偶性所到达的节点奇偶性是一定的 那么set维护奇偶点,然后每次set找点删点注意边界 set在删点后原来的迭代器会玄学出错,xuefeng好像被坑了,所以lowerbound一下就不用++了 B. Silhouette 很玄学的容斥 考场多QJ了18分,因为如果1-n是个序列,好像就是一个简单的容斥..... 然后用能发现是以"L"形的形状向右推的…
放在了考试T1 发现70分的DP很水啊,f[i][j]为当前位置是i分配了j个队的方案 我们用前缀和统计,在将i删去,j倒序枚举,就可以删掉一维(也可以滚动数组滚起来) 1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 #include<cstring> 5 #include<string> 6 #include<algorithm> 7 #include<v…
题意 出题人吃华 莱 士拉肚子了,心情不好,于是出了一道题面简单的难题. 共 T T T 组数据,对正整数 n n n 求 F ( n ) = ∑ i = 1 n μ 2 ( i ) i F(n)=\sum_{i=1}^n \mu^2(i)i F(n)=i=1∑n​μ2(i)i 对 2 64 2^{64} 264 取模的结果. n ≤ 1 0 14 , T ≤ 100. n\leq 10^{14},T\leq100. n≤1014,T≤100. 题解 莫比乌斯函数的平方,说明我们求的是 1 ∼…
未经博主同意不能转载 4558: [JLoi2016]方 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 362  Solved: 162 Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于…
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s Output 每次的方法数 Sample Input 1 2 5 10 2 3 2 3 1 10 1000 2 2 2 900 Sample Output 4 27 HINT 数据规模 di,s<=100000 tot<…
4767: 两双手 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 684  Solved: 208[Submit][Status][Discuss] Description 老W是个棋艺高超的棋手,他最喜欢的棋子是马,更具体地,他更加喜欢马所行走的方式.老W下棋时觉得无聊,便 决定加强马所行走的方式,更具体地,他有两双手,其中一双手能让马从(u,v)移动到(u+Ax,v+Ay)而另一双手能让 马从(u,v)移动到(u+Bx,v+By).小W看见老…