numpy伪随机数的生成】的更多相关文章

numpy伪随机数的生成 normal函数 可以用normal来得到一个标准正态分布的4×4样本数组 >>> import numpy as np >>> samples=np.random.normal(size=(4,4)) >>> samples array([[-1.24275887, 0.82243858, -0.04646941, -0.6668008 ], [ 0.2562527 , 1.42003215, 1.11415246, 0.4…
在stdlib.h中,有两个函数与伪随机数的生成有关:srand和rand.C语言中,随机数表有很多列,srand函数是根据其参数(unsigned类型)来获得一个种子(seed),根据种子来设置从哪一列开始取随机数.rand无参数,返回一个相应的随机数.种子相同,则从同一列随机数中选取,rand每次选取之后会自动选取下一个随机数.以上的所说十分之抽象,但是一下程序可以清楚地解释其原理. #include <stdio.h> #include <stdlib.h> int main…
代码 # -*- coding: utf- -*- """ Created on Sun Jun :: @author: Bruce Lau """ import numpy as np import pandas as pd # prepare for data data = np.arange(,).reshape((,)) data_df = pd.DataFrame(data) # change the index and column…
python想要生成随机数的话用使用random库很方便,不过如果想生成随机数组的话,还是用numpy更好更强大一点. 生成长度为10,在[0,1)之间平均分布的随机数组: rarray=numpy.random.random(size=10) 或者 rarray=numpy.random.random((10,)) 生成在-0.1到0.1之间的平均分布: rarray=0.2*numpy.random.random(size=10)-0.1 或者 rarray=numpy.random.uni…
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…
一:Numpy # 数组和列表的效率问题,谁优谁劣 # 1.循环遍历 import numpy as np import time my_arr = np.arange(1000000) my_list = list(range(1000000)) def arr_time(array): s = time.time() for _ in array: _ * 2 e = time.time() return e - s def list_time(list): s = time.time()…
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…
这系列用来介绍Python的标准库的支持Numpy部分.资料来自http://wiki.scipy.org/Tentative_NumPy_Tutorial,页面有许多链接,这里是直接翻译,所以会无法链接.可以大致看完该博文,再去看英文版. 1.先决条件 想要运行numpy,首先最小安装的有:Python.NumPy.:a.ipython 是一个增强的交互式python shell,它对于探索numpy的特性是非常方便的:b.matplotlib可以让你进行plot 图表:c.SciPy提供许多…
Random 类 命名空间:System 表示伪随机数生成器,一种能够产生满足某些随机性统计要求的数字序列的设备. 伪随机数是以相同的概率从一组有限的数字中选取的.所选数字并不具有完全的随机性,因为它们是用一种确定的数学算法选择的,但是从实用的角度而言,其随机程度已足够了. 伪随机数的生成是从种子值开始.如果反复使用同一个种子,就会生成相同的数字系列.产生不同序列的一种方法是使种子值与时间相关,从而对于 Random 的每个新实例,都会产生不同的系列.默认情况下,Random 类的无参数构造函数…