有一辆车一开始装了编号0-a的奶茶,现有m次操作,每次操作Pi在[-1,b),若Pi为一个未出现过编号的奶茶,就把他买了并装上车:若Pi为一个在车上的奶茶,则把他丢下车:否则,此次操作为捡起最早丢下去的奶茶,若没有符合要求的奶茶则忽略此次操作.对每次操作需要在线询问:操作进行后,不在车上的奶茶的最小编号.m<=1e6,b<=2m,a<=m,数据组数T<=50. 方法一:nlogn暴力,什么树状数组优先队列尽管上.. 方法二:不在车上的最小编号,其实就是还没买的最小和丢下车的最小,还…
被以前自己瞎YY的东西坑了T T...单调队列的确是可以维护这种操作的.... 显然这题可以转化成维护不在车上的东西的最小值, 支持插入和删去最早出现的值,然后就可以用单调队列了T T #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<algorithm> #define ll long long #define uint unsign…
[题意]一开始车上有编号为0~a的红茶,过程中出现的红茶编号仅有[0,b),有三种操作: 1.买进编号未在车上出现过的红茶. 2.丢掉车上指定编号的红茶. 3.将最早丢出去的红茶捡回来. 每次操作后求编号最小的不在车上的红茶. [算法]单调队列 [题解]本题最重要的性质在于早丢早捡. 因此,当进行丢掉编号为x的红茶这一操作时,如果编号>x的红茶早丢,那么也一定早捡,所以这些红茶没有贡献. 所以用单调队列维护所有有效的红茶,那么捡回来的时候判断是否队头,每次答案就是min(队头,maxs+1),m…
description 题面很长,这里给出题目链接 solution 用队列维护扔掉的红茶,同时若后扔出的红茶比先扔出的红茶编号更小,那么先扔出的红茶不可能成为答案,所以可以用单调队列维护 故每次询问的答案只可能是单调队列的队首或者没有出现过的红茶中编号最小的,后者可以\(O(b)\)暴力计算 code #include<bits/stdc++.h> using namespace std; namespace IO{ int c; unsigned int seed; unsigned in…
题目啰嗦:支持三个操作: 不可重复集合:1.加入一个数 2.删除一个数 3.恢复目前最早的一次删除的数 操作可能不合法,每次有效操作之后求集合的mex(最小没有出现过的数) 50组数据+1e6,必须O(N) 维护删除.恢复的数的操作可以队列维护. 数有没有在集合里可以全局bool数组记录 加入删除一个数,mex怎么维护? 考虑化简问题:只插入? 直接mex往上走到第一个没有出现的数即可.单增,O(N) 有删除? 如果删除小的一个数,mex要跳下来,然后再恢复这个删除的数,mex又得一步一步走上去…
n<=100,m<=1000的图,在此图上用油箱容量C<=1e5的车来旅行,旅行时,走一条边会耗一单伟油,在点i时,若油量<ci,则可以把油以pi的价格补到ci,pi<=n*n,ci<=1e5,现T<=1e5个询问:从Ai出发,带Yi<=n*n块钱走不少于Si<=1e9的路程,问最多剩多少钱. 方法一:其实就是问从某个点出发,走路程Si,问最少花费.F(i,j,k)--从i出发,剩下j的油,走路程k最小花费,决策一下在i要不要加油即可. 方法二:走路程…
考试的时候是这么想的: 求出每一个点花掉 $i$ 的花费向其他点尽可能走的最长距离,然后二分这个花费,找到第一个大于 $d$ 的就输出$.$然而,我这个记忆化搜索 $TLE$ 的很惨$.$这里讲一下正解: 上面的大题思路是正确的,但是记忆化搜索太慢,考虑倍增 $floyd.$令 $f[i][j]$ 表示 $i$ 号点花费 $j$ 能走的最远距离$.$令 $go[i][j][k]$ 表示 $i$ 号点走到 $j$ 号点走 $k$ 步的最远距离(在 $i$ 号点加一次油)$.$如果能求出 $g[i]…
description NOIP 复赛之前,HSD 桑进行了一项研究,发现人某条染色体上的一段 DNA 序列中连续的\(k\)个碱基组成的碱基序列与做题的 AC 率有关!于是他想研究一下这种关系. 现在给出一段 DNA 序列,请帮他求出这段 DNA 序列中所有连续 \(k\)个碱基形成的碱基序列中,出现最多的一种的出现次数. \(n\le5*10^6,k\le 10\) solution 直接找出所有连续\(k\)个碱基形成的碱基序列的哈希值即可 code #include<bits/stdc+…
description sosusosu 虐爆 OI 之后成为了一名文化课选手.一天,他做作业碰到了一堆数列问题,每道题给出的数列都是以下形式: 给定一个下标从\(0\)开始,无限长的整数列\({a_{i}}\),\(i \in N\) ,已知\(a_{0},a_{1}\) 的值,以及递推式\(a_{i+2}=ka_{i+1}+a_{i}\),\(i \in N\) ,\(k \in N^+\). sosusosu 研究了这些数列,发现它们十分优美充满人类智慧,于是决定出一道 OI 题. sos…
description 题面较长,这里给出题目链接 solution 考虑预处理出\(f[i][j]\)表示在第\(i\)个点加满油后,从第\(i\)个点出发,至多消耗\(j\)元钱走过的最大路程,那么对于每一个询问就可以二分答案\(O(logq)\)查询了 可以得出转移方程\(f[i][k]=\max(f[j][k-p[j]]+g[i][j],f[i][k])\),其中\(g[i][j]\)表示从在\(i\)点加满油后从\(i\)走到\(j\)能走过的最大路程 \(g\)可以使用倍增\(flo…