作者:寒小阳 时间:2013年9月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/11938973. 声明:版权所有,转载请注明出处,谢谢. 0.前言 当年博主自己参加校招笔试面试时就遇到过几次catalan数相关的题目,今年又到了互联网招聘季,翻看下近期各大公司的笔试面试题,发现它依旧是很容易被考察的点.尴尬的是,博主自己觉得catalan数相关的题目不好归类到某种具体的数据结构或者算法里面(计算catalan数的那个小程序不算算法…
http://blog.csdn.net/han_xiaoyang/article/details/11938973#t6…
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为 令其为h(n)的话,满足h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2) 我们从中取出的Cn就叫做第n个Catalan数,前几个Catalan数是:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,…
先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2  也可以是2,1:那么有2种:n=3,可以是1,2,3或1,3,2或2,1,3或2,3,1或3,2,1:一共5种:容易联想到可能有一个通项公式可以求:(扯一点,以前学栈的时候做过判断一个序列是否为合法的出栈顺序的题目,只要依次检查序列,对于一个元素i,在i后面出来的且序号比i小的肯定是从大到小出来的,比如 4 2 1 3,如果4…
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到Catalan数,但是我却花了两个小时去找递推式. 首先 Catalan数 : 基本规律:1,2,5,14,42,132,.......... 典型例题: 1.多边形分割.一个多边形分为若干个三角形有多少种分法. C(n)=∑(i=2...n-1)C(i)*C(n-i+1) 2.排队问题:转化为n个人…
你真的了解字典(Dictionary)吗?   从一道亲身经历的面试题说起 半年前,我参加我现在所在公司的面试,面试官给了一道题,说有一个Y形的链表,知道起始节点,找出交叉节点.为了便于描述,我把上面的那条线路称为线路1,下面的称为线路2. 思路1 先判断线路1的第一个节点的下级节点是否是线路2的第一个节点,如果不是,再判断是不是线路2的第二个,如果也不是,判断是不是第三个节点,一直到最后一个.如果第一轮没找到,再按以上思路处理线路一的第二个节点,第三个,第四个... 找到为止.时间复杂度n2,…
概要 在一些面试的智力题中会遇到此数的变形,如果完全不了解,直接想结果是很困难的,故在此简单介绍一下.   基本定义 Catalan 数的定义根据不同的应用环境有很多不同的定义方式,下面给出一个.   Catalan 数:一个凸 \(n\) 边形,通过不相交于 \(n\) 边形内部的对角线,把 \(n\) 边形拆分成若干三角形,不同拆分的数目用 \(f(n)\) 表示,即称为 Catalan 数. 例如下五边形: 有 \(f(5) = 5\). 它有以下的递推关系: \begin{align}…
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1)=1,Catalan数满足递归式:h(n) = h(1)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(1),n>=2该递推关系的解为:h(n) = C(2n-2,n-1)/n,n=1,2,3,...(其中C(2n-2,n-1)表示2n-2个中取n-1个的组合数) 问题描…
这一部分是C/C++程序员在面试的时候会被问到的一些题目的汇总.来源于基本笔试面试书籍,可能有一部分题比较老,但是这也算是基础中的基础,就归纳归纳放上来了.大牛们看到一笑而过就好,普通人看看要是能补上一两个模糊的知识点,也算有点进步吧. 1.简述变量声明和定义的区别. 为变量分配地址和存储空间的称为定义,不分配地址的称为声明.一个变量可以在多个地方声明,但是只在一个地方定义.加入extern修饰的是变量的声明,说明此变量将在文件以外或在文件后面部分定义. 2.简述sizeof和strlen的区别…
go golang 笔试题 面试题 笔试 面试 发现go的笔试题目和面试题目还都是比较少的,于是乎就打算最近总结一下.虽然都不难,但是如果没有准备猛地遇到了还是挺容易踩坑的. 就是几个简单的笔试题目,也可能面试的时候直接给看让说结果. 1, 用不同的goroutine去操作map的时候会存在线程同步的问题,把map换成int ,这个问题同样存在.在go里是这样. 2,下面这段代码输出的值为: func (){ jsonStr:=[]byte(`{"age":1}`) var value…
都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有关的题目会更新 n个乒乓球放到m个盒子里的方案数 1.球相同,盒子不同,不允许空 分成m段,n-1个空选m-1个放隔板 ,$\binom{n-1}{m-1}$ 2.球相同,盒子不同,允许空 $(1)$ 加入m个球变成不允许空 $(2)$ m-1个隔板和球放在一起,从中选m-1个做隔板 $C_{n+m…
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a2n-1,所有的偶数项满足a2<a4<…<a2n: (3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列.因为最后的答…
Catalan数首先是由Euler在精确计算对凸n边形的不同的对角三角形剖分的个数问题时得到的,它经常出现在组合计数问题中.     问题的提出:在一个凸n边形中,通过不相交于n边形内部的对角线,把n边形拆分成若干三角形,不同的拆分数目用hn表示,hn即为Catalan数.例如五边形有如下五种拆分方案(图3-14),故h5=5.求对于一个任意的凸n边形相应的hn.   Catalan数是比较复杂的递推关系,尤其在竞赛的时候,选手很难在较短的时间里建立起正确的递推关系.当然,Catalan数类的问…
组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.html 以下部分节选自 http://blog.csdn.net/sr_19930829/article/details/40888349 第一类Stirling数 定理:第一类Stirling数$s(p,k)$计数的是把p个对象排成k个非空循环排列的方法数. 证明:把上述定理叙述中的循环排列叫做圆圈…
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1)=1,Catalan数满足递归式:h(n) = h(1)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(1),n>=2该递推关系的解为:h(n) = C(2n-2,n-1)/n,n=1,2,3,...(其中C(2n-2,n-1)表示2n-2个中取n-1个的组合数) 问题描…
Catalan数(卡特兰数) 卡特兰数:规定h(0)=1,而h(1)=1,h(2)=2,h(3)=5,h(4)=14,h(5)=42,h(6)=132,h(7)=429,h(8)=1430,h(9)=4862,h(10)=16796,h(11)=58786,h(12)=208012,h(13)=742900,h(14)=2674440,h(15)=9694845····················· 原理 令h(0)=1,h(1)=1,catalan数满足递推式  : h(n)= h(0)*…
出处:http://blog.sina.com.cn/s/blog_6aefe4250101asv5.html 什么是Catalan数 说到Catalan数,就不得不提及Catalan序列,Catalan序列是一个整数序列,其通项公式是我们从中取出的就叫做第n个Catalan数,前几个Catalan数是:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 3535767…
好久未曾启用我的博客,最近来上海找工作,想将笔试面试的过程做个记录,毕竟有总结才有提高嘛.今天算是笔试面试正式开始第一天吧,以下就是我的笔试总结(没有原题了,只有知识点): 笔试题1:java static对象的使用:包括静态方法,静态变量,静态代码块,main方法,构造器,普通成员方法等的执行顺序,以代码的形式展现吧. public class TestMain { static { System.out.println("执行静态代码块"); } public TestMain()…
Java 笔试面试(6)异常处理 1. finally的代码何时执行? 问题描述:try{}里有一个return语句,那么在这个try后面的finally{}中的代码是否为执行?如果会,是在return之前还是在return之后? public class Test { public static int testFinally(){ try{ return 1; }catch(Exception e){ return 0; }finally{ System.out.println("execu…
1. C++常见笔试面试要点: C++语言相关: (1) 虚函数(多态)的内部实现 (2) 智能指针用过哪些?shared_ptr和unique_ptr用的时候需要注意什么?shared_ptr的实现原理是什么? (智能指针shared_ptr的用法.智能指针unique_ptr的用法) (3) 特化和泛化 STL: (1) vector.list.set.map内部实现以及异同,迭代器插入删除后vector和list的迭代器是否会失效? (2) STL除了序列式容器和关联式容器,还有哪些值得学…
应用一: codevs 3112 二叉树计数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 一个有n个结点的二叉树总共有多少种形态 输入描述 Input Description 读入一个正整数n 输出描述 Output Description 输出一个正整数表示答案 样例输入 Sample Input 6 样例输出 Sample Output 132 数据范围及提示 Data Size & Hint 1<=n&l…
Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要注意,就算开long long 也只能表示到第33个,之后就会溢出. &代码: void Solve() { f[1]=1; for(int i=2;i<40;i++){ f[i]=f[i-1]*(4*i-2)/(i+1); } PIar(f,40) } 输出数据在下面,也很显然,33之后就变成…
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) =h(n-1)*2(2n-1)/(n+1) 具体推导请百度,这里只需记得推导公式为h(n)=h(n-1)*2(2n-1)/(n+1)即可. 我们来说说这个的应用吧,从catalan数的定义递归定义可以看出,它是由自己 本身的一部分和n减去一部分 的和得到的,也就是说,有n个物品,1个物品进行操作1,n-…
一次小小的笔试面试经历,虽然是一些简单的问题,但是自己在这儿总结一下,也查一些资料,得出一些较好的答案,也能帮助自己成长. 1.自己熟悉的http状态码及其意义 其实这个题答案随处可见.这儿也还是记录一下我们常见的http状态码 200:请求返回的状态正常. 301:url永久性重定向. 302:url暂时性重定向. 400:错误请求. 401:未授权访问. 403:禁止访问. 404:未找到 500:服务器错误. 502:bad gateway.错误网关. 504:Gateway Timeou…
Raney引理: 设整数序列A = {Ai, i=1, 2, …, N},且部分和Sk=A1+…+Ak,序列中所有的数字的和SN=1,在A的N个循环表示中,有且仅有一个序列B,满足B的任意部分和Si均大于零. Raney引理有一个很简单的数形结合的证明见<浅谈数形结合思想在信息学竞赛中的应用>. 关于Catalan数wiki和百科上写的很详细,其中有一问题一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?该问题的解为h(n). 用1表示一个数字进栈,-1表示一个数字出栈,…
题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n + 2) 题目要求对M = 1e9+7 取模 利用乘法逆元将原式中除以(n+2)取模变为对(n+2)逆元的乘法取模 C[n+1] = C[n] * (4 * n + 2) * Pow(n+2, MOD-2) % MOD 其中Pow用快速幂解决 #include <cstdio> #include…
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ) .ACM_资料 .ACM ( 组合 ) 维基百科资料: 卡塔兰数 卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为                       另类递归式:  h(n)=((4*…
问题描述: 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 这个笔试题,很YD,因为把某个递归关系隐藏得很深. 问题分析: 我们先把这12个人从低到高排列,然后,选择6个人排在第一排,那么剩下的6个肯定是在第二排. 用0表示对应的人在第一排,用1表示对应的人在第二排,那么含有6个0,6个1的序列,就对应一种方案. 比如000000111111就对应着 第一排:0 1 2 3 4 5 第二排:6 7 8 9 10 11 010101010…
题目链接:option=com_onlinejudge&Itemid=8&page=show_problem&problem=1253">10312 - Expression Bracketing 题意:有n个x,要求分括号,推断非二叉表达式的个数. 思路:二叉表达式的计算方法就等于是Catalan数的,那么仅仅要计算出总数,用总数减去二叉表达式个数.得到的就是非二叉表达式的个数. 那么计算方法是什么呢. 看题目中的图,对于n = 4的情况,能够分为这几种情况来讨论…
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/article/details/6776182 #include<cstdio> #include<cstring> #include<string> #include<queue> #include<iostream> #include<algorit…