caffe训练自己的数据集】的更多相关文章

默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可).即训练数据集:/data/train/0./data/train/1  训练数据集:/data/val/0./data/val/1. 数据准备好之后,创建记录数据文件和对应标签的txt文件 (1)创建训练数据集的train.txt import os f =open(r'tr…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…
SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如何训练4 使用SSD如何测试 1 数据集的标注 数据的标注使用BBox-Label-Tool工具,该工具使用python实现,使用简单方便.修改后的工具支持多label的标签标注.该工具生成的标签格式是:object_numberclassName x1min y1min x1max y1maxcl…
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1:到了后面,迭代次数增高,下降0.01,再多,然后再小一些. 2.权重 梯度消失的情况,就是当数值接近于正向∞,求导之后就更小的,约等于0,偏导为0 梯度爆炸,数值无限大 对于梯度消失现象:激活函数 Sigmo…
目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ~/work/ssd cd $_ git checkout ssd 编译caffe 下载必要的模型(包括prototxt和caffemodel): 运行了evaluation和webcam的例子,会提示caffe的import报错.添加pycaffe路径到PYTHONPATH环境变量,或者写一个_…
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分类.第一篇<实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >有讲过使用Caffe的背景.所以这篇记录使用的素材就是12306的验证码来进行图像识别分类. 1.准备素材 由于这里抓取到的验证码是整合后的大图.就是8张小图片合成的.由于12306的验证码大图并…
Tags: Caffe Categories: Tools/Wheels --- 1. 将caffe训练时将屏幕输出定向到文本文件 caffe中自带可以画图的工具,在caffe路径下: ./tools/extra/parse_log.sh ./tools/extra/extract_seconds.py ./tools/extra/plot_training_log.py.example 日志重定向:在训练命令中加入一行参数,实现log日志定向到文件: caffe train --sover=/…
https://www.jianshu.com/p/a672f702e596 本文记录了在ubuntu16.04下使用py-faster-rcnn来训练自己的数据集的大致过程. 在此之前,已经成功配置过了caffe-gpu,使用的显卡是GTX1080ti,安装的cuda8.0.61+cudnn v5.1,caffe-gpu的配置过程可以参考:Ubuntu16.04配置caffe-GPU环境. 第一步:制作自己的数据集 首先,为了方便,可以将自己的训练图像名称改成PASCAL VOC格式,比如我自…
[写在前面] 用Tensorflow(TF)已实现好的卷积神经网络(CNN)模型来训练自己的数据集,验证目前较成熟模型在不同数据集上的准确度,如Inception_V3, VGG16,Inception_resnet_v2等模型.本文验证Inception_resnet_v2基于菜场实拍数据的准确性,测试数据为芹菜.鸡毛菜.青菜,各类别样本约600张,多个菜场拍摄,不同数据源. 补充:自己当初的计划是用别人预训练好的模型来再训练自己的数据集已使可以完成新的分类任务,但必须要修改代码改网络结构,并…