利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的具体操作:整个图片被不重叠的分割成若干个同样大小的小块(pooling size).每个小块内只取最大的数字,再舍弃其他节点后,保持原有的平面结构得出 output. 相应的,对于多个feature map,操作如下,原本64张224X224的图像,经过Max Pooling后,变成了64张112X…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
摘要:CNN作为当今绝大多数计算机视觉系统的核心技术,在图像分类领域做出了巨大贡献.本文从计算机视觉的用例开始,介绍CNN及其在自然语言处理中的优势和发挥的作用. 当我们听到卷积神经网络(Convolutional Neural Network, CNNs)时,往往会联想到计算机视觉.CNNs在图像分类领域做出了巨大贡献,也是当今绝大多数计算机视觉系统的核心技术,从Facebook的图像自动标签到自动驾驶汽车都在使用. 最近我们开始在自然语言处理(Natural Language Process…
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
前言   在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享.目前的计划如下(以下网络全部使用Pytorch搭建): 专题一:计算机视觉基础 介绍CNN网络(计算机视觉的基础) 浅谈VGG网络,介绍ResNet网络(网络特点是越来越深) 介绍GoogLeNet网络(网络特点是越来越宽) 介绍DenseNet网络(一个看似十分NB但是却实际上用得不多的网络) 整理期间还会分享一些自己正在参加的比赛的Baseline 专题二:GAN网络 搭建普…
Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Michael Nielsen 先生的 Deep Learning 教程. 用了他的代码在theano下测试了下中文车牌字符的识别.由于我没有GPU,简单的在进行了16个epoch之后,识别率达到了 98.41% ,由于图像本来质量就不高,达到这个识别率,效果挺不错了. 一共 31 类 车牌中文字符数据来源于…
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正…
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心   个人觉得CNN.RNN和DNN不能放在一起比较.DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在…
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积:感受视野5*5,步长为1,卷积核:64个 第二层池化:池化视野2*2,步长为2 全连接层:设置1024个神经元 输出层:0~9十个数字类别   代码实现: import tensorflow as tf #Tensorflow提供了一个类来处理MNIST数据 from tensorflow.exa…