Tesseract-OCR的简单使用与训练 最近看到某个网站提交数据要提交验证码,用tesseract自带的识别, 识别出来是什么鬼,0-9识别成了什么玩意! so决定自己训练下tesseract... 1.准备工作(安装工具环境) 1.下载安装tesseract-ocr-setup-3.02.02.exe安装包   http://www.pc0359.cn/downinfo/55218.html 2.安装jTessBoxEditor 下载jTessBoxEditor,地址https://sou…
识别验证码一直是本人想要做的事情,一直在接触按键精灵,了解到有一个虹鱼图灵识别插件专门做验证码和图像识别,原理就是图片处理和制作字库识别,制作字库我一直觉得很麻烦,工程量太大.不管怎样,它能用能达到我的目的,并且比机器学习,opencv是要简单点,那我就讲讲这个虹鱼图灵识别插件. 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家提供一个好的学习平台,免费领…
Maven坐标: <!-- https://mvnrepository.com/artifact/com.asprise.ocr/java-ocr-api --> <dependency> <groupId>com.asprise.ocr</groupId> <artifactId>java-ocr-api</artifactId> <version>15.3.0.3</version> </depend…
识别率有问题A大概率识别为n,因此需要训练,这里讲一下 如何训练 参考 java代码里边直接使用tess4j,是对tesseract的封装,但是如果要训练,还是需要在进行安装tesseract-ocr的 下载地址参考另一篇 然后还需要 下载jTessBoxEditorhttps://sourceforge.net/projects/vietocr/files/jTessBoxEditor/ 多搜集几张图片,进行二值化去噪点和裁切处理 双击运行 首先打开图片 全选图片,应该可以自动拼接为一个大的t…
先灰化图片,把图片二值化,利用pytesseract包的pytesseract.image_to_string转换出文字.…
1,验证码识别接口代码 import json import base64 import requests def shibie(): data = {} path = "./img/" file_name = "a.jpg" with open(path + file_name, "rb") as f: data0 = f.read() data['image_base64'] = str(base64.b64encode(data0),'ut…
第三百四十三节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy模拟登陆和知乎倒立文字验证码识别 第一步.首先下载,大神者也的倒立文字验证码识别程序 下载地址:https://github.com/muchrooms/zheye 注意:此程序依赖以下模块包 Keras==2.0.1 Pillow==3.4.2 jupyter==1.0.0 matplotlib==1.5.3 numpy==1.12.1 scikit-learn==0.18.1 tensorflow==1.0.1…
第一步.首先下载,大神者也的倒立文字验证码识别程序 下载地址:https://github.com/muchrooms/zheye 注意:此程序依赖以下模块包 Keras==2.0.1 Pillow==3.4.2 jupyter==1.0.0 matplotlib==1.5.3 numpy==1.12.1 scikit-learn==0.18.1 tensorflow==1.0.1 h5py==2.6.0 numpy-1.13.1+mkl 我们用豆瓣园来加速安以上依赖装如: pip instal…
Blog:https://blog.csdn.net/qq_40962368/article/details/89312429(Verification_Code_Identification) 步骤: (1)获取批量验证码图片(利用某高校登录页面的验证码图片) (2)为验证码图片做信息标注(手动标记,要确保百分百正确) (3)利用Tesseract-OCR对验证码图片进行识别并测试识别效果 一.爬取某高校页面的验证码图片100张 打开网址:http://jwxt.qlu.edu.cn/veri…
在自动化测试或者安全渗透测试中,Captcha验证码的问题经常困扰我们,还好现在OCR和AI逐渐发展起来,在这块解决上越来越支撑到位. 我推荐的几种方式,一种是对于简单的验证码,用开源的一些OCR图片处理包即可,对于复杂的识别率要求非常高的,可以考虑百度等公司的OCR有偿服务(当然注册后好像每天可以免费试用上百次,普通测试够用了). 本人环境: win10,python3.x, pip( python3安装版会自带), pycharm, tesseract-ocr-setup-3.02.02.e…