Kmeans算法的K值和聚类中心的确定】的更多相关文章

0 K-means算法简介 K-means是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一. K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 算法过程如下:   1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的各个类的质心 4)迭代2-3步直至新的质心与原质心相等或小于指定阈值,算法结束     参考…
Kmeans算法(K均值算法) KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标. 如何定义两个样本的相似: 两个样本在欧式空间中的距离 引入新概念: Cluster: 表示一个簇 centroid: 表示当前簇的中心 算法步骤 : 1.随机从数据集中选取k个样本当做centroid 2.对于数据集中的每个点,计算它距离每个centroid的距离,并把它归…
关于如何选择Kmeans等聚类算法中的聚类中心个数,主要有以下方法(译自维基): 1. 最简单的方法:K≍sqrt(N/2) 2. 拐点法:把聚类结果的F-test值(类间Variance和全局Variance的比值)对聚类个数的曲线画出来,选择图中拐点 3. 基于Information Critieron的方法:如果模型有似然函数(如GMM),用BIC.DIC等决策:即使没有似然函数,如KMean,也可以搞一个假似然出来,例如用GMM等来代替 4. 基于信息论的方法(Jump法),计算一个di…
import numpy as np from sklearn.cluster import KMeans from scipy.spatial.distance import cdist import matplotlib.pyplot as plt c1x = np.random.uniform(0.5, 1.5, (1, 10)) c1y = np.random.uniform(0.5, 1.5, (1, 10)) c2x = np.random.uniform(3.5, 4.5, (1,…
肘部法则–Elbow Method 我们知道k-means是以最小化样本与质点平方误差作为目标函数,将每个簇的质点与簇内样本点的平方距离误差和称为畸变程度(distortions),那么,对于一个簇,它的畸变程度越低,代表簇内成员越紧密,畸变程度越高,代表簇内结构越松散. 畸变程度会随着类别的增加而降低,但对于有一定区分度的数据,在达到某个临界点时畸变程度会得到极大改善,之后缓慢下降,这个临界点就可以考虑为聚类性能较好的点. import pandas as pd from sklearn.cl…
一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结构信息,对数据进行分簇(分类).聚类算法的目标是,簇内相似度高,簇间相似度低 二.基本的聚类分析算法 1. K均值(K-Means): 基于原型的.划分的距离技术,它试图发现用户指定个数(K)的簇. 2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝…
k-menas算法之见解 主要内容: 一.引言 二.k-means聚类算法 一.引言: 先说个K-means算法很高大上的用处,来开始新的算法学习.美国竞选总统,选票由公民投出,总统由大家决定.在2004年出现候选人得票数非常接近,所以1%的选民手中的选票非常关键,决定着总统的归属.那么如何找出这类选民,以及如何在有限的预算下采取措施来吸引他们呢? 答案就是聚类,这就要说到本次要讲到的K-means算法了.通过收集用户的信息,可以同时收集用户满意和不满意的信息:然后将这些信息输入到聚类算法中,就…
大家接触的第一个聚类方法,十有八九都是K-means聚类啦.该算法十分容易理解,也很容易实现.其实几乎所有的机器学习和数据挖掘算法都有其优点和缺点.那么K-means的缺点是什么呢? 总结为下: (1)对于离群点和孤立点敏感: (2)k值选择; (3)初始聚类中心的选择: (4)只能发现球状簇. 对于这4点呢的原因,读者可以自行思考下,不难理解.针对上述四个缺点,依次介绍改进措施. 改进1 首先针对(1),对于离群点和孤立点敏感,如何解决?笔者在前面的一篇博客中,提到过离群点检测的LOF算法,通…
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习.我们都知道每一届的美国总统大选,那叫一个竞争激烈.可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大.有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归,那自然能以压倒性优势竞选成功,那么我们的k-means算法还真用不上.但是,我们应该知道2004年的总统大选中,候选人的得票数非常接近,接近到什么程度呢?如果1%的选民将手中的选票投向任何一位候选人,都直接决定了…
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习.我们都知道每一届的美国总统大选,那叫一个竞争激烈.可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大.有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归,那自然能以压倒性优势竞选成功,那么我们的k-means算法还真用不上.但是,我们应该知道2004年的总统大选中,候选人的得票数非常接近,接近到什么程度呢?如果1%的选民将手中的选票投向任何一位候选人,都直接决定了…
k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设定,例如可选开始的$K$个模式样本的向量值作为初始聚类中心.      第二步:逐个将需分类的模式样本$\{x\}$按最小距离准则分配给$K$个聚类中心中的某一个$z_j(1)$.假设$i=j$时, \[D_j (k) = \min \{ \left\| {x - z_i (k)} \right\|…
本文主要基于Anand Rajaraman和Jeffrey David Ullman合著,王斌翻译的<大数据-互联网大规模数据挖掘与分布式处理>一书. KMeans算法是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数. KMeans算法本…
根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性.  场景 一 假设有如下图的一组数据, 生成数据的R代码如下 x1 <- seq(,pi,length.) y1 <- sin(x1) + ) x2 <- ,pi,length.) y2 <- cos(x2) + ) data <- data.frame(c(x1,x2),c(y1,y2)) names(data) <-…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
k-均值聚类算法 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 适用数据类型:数值型数据 其工作流程:首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,具体来讲,为每个点找距离其最近的质心,并将其分配给该质心所对应的簇.完成之后,每个簇的质心更新为该簇所有点的平均值.…
最近研究数据挖掘的相关知识,总是搞混一些算法之间的关联,俗话说好记性不如烂笔头,还是记下了以备不时之需. 首先明确一点KNN与Kmeans的算法的区别: 1.KNN算法是分类算法,分类算法肯定是需要有学习语料,然后通过学习语料的学习之后的模板来匹配我们的测试语料集,将测试语料集合进行按照预先学习的语料模板来分类 2Kmeans算法是聚类算法,聚类算法与分类算法最大的区别是聚类算法没有学习语料集合. K-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据他们的属性分为k个聚类以便使得…
K-means 算法是无监督的 聚类算法,算法简单,有效. K-means算法: 输入参数: 指定聚类数目 k,训练集 X 输出 : k 个聚类 算法描述: K-means 算法 是一个 迭代算法,每次迭代分成两个步骤: 1)指定聚类步骤: 计算每个样本到 k 个 聚类中心的 距离,将样本归类到 距离 聚类中心 最小的那个类别 2)移动聚类中心步骤: 根据每个聚类所拥有的样本点,重新计算每个聚类的中心 伪代码描述: 随机初始化 k 个聚类的 中心 u(1), u(2)... u(k) repea…
<机器学习实战>kMeans算法(K均值聚类算法) 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,这在机器学习中被称作 unsupervised learning (无监督学习).在本文中,我们关注其中一个比较简单的聚类算法:k-means算法. k…
1. SSE误差平方和(Sum of Square due to Error): 聚类情况: 计算公式: 注:SSE参数计算的内容为当前迭代得到的中心位置到各自中心点簇的欧式距离总和,这个值越小表示当前的分类效果越好! 参数描述: P表示点位置(x,y). Mi为中心点的位置. SSE表示了,当前的分类情况的中心点到自身分类簇的点的位置的总和. 使用方法: 在聚类算法迭代的过程中,我们通过计算当前得到的中心点情况下的SSE值来评估现在的分类效果,如果SSE值在某次迭代之后大大减小就说明聚类过程基…
聚类的基本思想 俗话说"物以类聚,人以群分" 聚类(Clustering)是一种无监督学习(unsupervised learning),简单地说就是把相似的对象归到同一簇中.簇内的对象越相似,聚类的效果越好. 定义:给定一个有个对象的数据集,聚类将数据划分为个簇,而且这个划分满足两个条件:(1)每个簇至少包含一个对象:(2)每个对象属于且仅属于一个簇. 基本思想:对给定的,算法首先给出一个初始的划分方法,以后通过反复迭代的方法改变划分,使得每一次改进之后的划分方案都较前一次更好. 监…
可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ knn模型的三要素:距离度量(如何计算样本之间的距离).k值的选择(选择要判断的目标周围的几个样本去判断类别).分类决策规则(如何决定目标的类别) 图中所谓没有明显的训练过程就是给定目标样本,只需要直接计算其周围K个样本的类别,通过分类决策规则判断出来目标样本的类别就可以,不需要预先训练一个判别模型.…
文章内容转载自:http://blog.csdn.net/sinat_35512245/article/details/55051306                                http://blog.csdn.net/baimafujinji/article/details/50570824 -------------------------------------------------------------------------------------------…
一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一个大类.不停的合并,直到合成了一个类.其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等.比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离. 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerat…
写在前面:之前想分类图像的时候有看过k-means算法,当时一知半解的去使用,不懂原理不懂使用规则...显然最后失败了,然后看了<机器学习>这本书对k-means算法有了理论的认识,现在通过贾志刚老师的视频有了实际应用的理解. k-means算法原理 注:还是和之前一样,核心都是别人的,我只是知识的搬运工并且加上了自己的理解.弄完之后发现理论部分都是别人的~~没办法这算法太简单了... k-means含义:无监督的聚类算法. 无监督:就是不需要人干预,拿来一大批东西直接放进算法就可以进行分类.…
kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html 下面学习一下opencv中kmeans函数的使用.      首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点.      随机产生的簇的数量是2到5之间的值,采样点的数量范围是1-1000,一维矩阵centers存放kmeans算法结束…
github:kmeans代码实现1.kmeans代码实现2(包含二分k-means) 本文算法均使用python3实现 1 聚类算法   对于"监督学习"(supervised learning),其训练样本是带有标记信息的,并且监督学习的目的是:对带有标记的数据集进行模型学习,从而便于对新的样本进行分类.而在"无监督学习"(unsupervised learning)中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在之前发表的线性回归.逻辑回归.神经网络.SVM支持向量机等算法都是监督学习算法,需要样本进行训练,且 样本的类别是知道的.接下来要介绍的是非监督学习算法,其样本的类别是未知的.非监督学习算法中,比较有代表性 的就是聚类算法.而聚类算法中,又有 分割方法:K-means 分层次方法:ROCK . Chemeleon 基于密度的方法:DBSCAN 基于网格的方法:STING . WaveCluster 以上只是部分算…
一.背景 煤矿地磅产生了一系列数据: 我想从这些数据中,取出最能反映当前车辆重量的数据(有很多数据是车辆上磅过程中产生的数据).我于是想到了聚类算法KMeans,该算法思想比较简单. 二.算法步骤 1.从样本中随机取出k个值,作为初始中心 2.以k个中心划分这些数据,分为k个组 3.重新计算出每个组的中心,作为新中心 4.如果初始中心和新中心不相等,则把新中心作为初始中心,重复2,3.反之,结束 注意: 1.我没有用严格的算法定义,怕不好理解 2.KMeans善于处理球形数据,因此随机取k个质心…
应用场景: 可以应用在不同行业的客户分类管理上,比如航空公司,传统的RFM模型不再适用,通过RFM模型的变形LRFMC模型实现客户价值分析:基于消费者数据的精细化营销 应用价值: LRFMC模型构建之后使用了经典的聚类算法-K-Means算法来对客户进行细分,而不是传统的来与参考值对比进行手工分类,使得准确率和效率得到了大大提升,从而实现客户价值分析,进行精准的价格和服务设置: 经常买机票的朋友不知道有没有发现,机票的价格通常“阴晴不定”.3个月前是一个价格,2个月1个月1周前又是另一个价格:有…
kmeans算法的流程:   EM思想很伟大,在处理含有隐式变量的机器学习算法中很有用.聚类算法包括kmeans,高斯混合聚类,快速迭代聚类等等,都离不开EM思想.在了解kmeans算法之前,有必要详细了解一下EM思想. Kmeans算法属于无监督学习中的一种,相比于监督学习,能节省很多成本,省去了大量的标签标注.每个数据点都有自己的隐式的分类.聚类要做的是,从中选取出数个聚类中心,对数据集进行初始聚类.此后,通过更新聚类中心(把簇中心缓存起来),重新聚类,然后再更新簇中心,如果此簇中心与旧的簇…