TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognition. http://www.cs.toronto.edu/~kriz/cifar.html Code in this directory demonstrates how to use TensorFlow to train and evaluate a convolutional neural…
(1) 最简单的神经网络分类器 # encoding: UTF-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data as mnist_data print("Tensorflow version " + tf.__version__) print(tf.__path__) tf.set_random_seed(0) # 输入mnist数据 mnist = mnist_d…
import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape when restore# W = tf.Variable([[1,2,3],[3,4,5]],dtype=tf.float32,name='Weights')# b = tf.Variable([[1,2,3]],dtype=tf.float32,name='biases') # init = tf…
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 datamnist = input_data.read_data_sets('MNIST_data',one_hot=True) def compute_accuracy(v_xs,v_ys): global prediction y_pre = sess.run(prediction,feed_dict…
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 datamnist = input_data.read_data_sets('MNIST_data',one_hot=True) def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(t…
import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope('layer'): with tf.name_sco…
import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) W…
import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) output = tf.multiply(input1,input2) with tf.Session() as sess: print(sess.run(output,feed_dict={input1:[7.],input2:[2.0]}))…
import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.add(state,one)update = tf.assign(state,new_value) init = tf.initialize_all_variables()#must have if define variable with tf.Session() as sess: sess.run(…
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3]])matrix2 = tf.constant([[2],[2]])protuct = tf.matmul(matrix1,matrix2) # sess = tf.Session()# result = sess.run(protuct) # print(result)# sess.close()…