目录 使用 DL4J 训练中文词向量 1 预处理 2 训练 3 调用 附录 - maven 依赖 使用 DL4J 训练中文词向量 1 预处理 对中文语料的预处理,主要包括:分词.去停用词以及一些根据实际场景制定的规则. package ai.mole.test; import org.ansj.domain.Term; import org.ansj.splitWord.analysis.ToAnalysis; import org.nlpcn.commons.lang.tire.domain.…
注:目前仅说明windows下的情况 前言 网上已经有大量的tesseract的识别教程,但是主要有两个缺点: 大多数比较老,有部分内容已经不适用. 大部分只是就英文的训练进行探索,很少针对中文的训练. 接下来尽可能详细的介绍自己tesseract训练中文识别的经验. 本文中使用的tesseract版本为3.05; 为什么用3.05呢? 从官方文档上看4.0版本(windows版本于2017年1月30号发布)显著的提高了识别率,同时也加大了性能的消耗.理论上我是应该用4.0.但这不是重点.重点是…
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词条内容处理成单行数据,word2vec训练原理是基于词共现来训练词之间的语义联系的.不同词条内容需分开训练 2 中文分词:中文NLP很重要的一步就是分词了,分词的好坏很大程度影响到后续的模型训练效果 3 特征处理:也叫词向量编码,将文本数据转换成计算机能识别的数据,便于计算,通常是转换成数值型数据,…
--  这篇文章是一个学习.分析的博客 --- 1.准备数据与预处理 首先需要一份比较大的中文语料数据,可以考虑中文的维基百科(也可以试试搜狗的新闻语料库).中文维基百科的打包文件地址为 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 中文维基百科的数据不是太大,xml的压缩文件大约1G左右.首先用 process_wiki_data.py处理这个XML压缩文件,执行:python pr…
在上一篇对中文维基百科语料处理将其转换成.txt的文本文档的基础上,我们要将为文本转换成向量,首先都要对文本进行预处理 步骤四:由于得到的中文维基百科中有许多繁体字,所以我们现在就是将繁体字转换成简体字 opencc工具进行繁简转换,首先去下载opencc:https://bintray.com/package/files/byvoid/opencc/OpenCC 下载完成之后解压即可,随后使用命令: opencc -i wiki.zh.text -o wiki.zh.jian.text -c…
最近用OCR识别身份证,用的tesseract引擎.但是google自带的中文库是在太慢了,尤其是对于性别.民族这样结果可以穷举的特征信息而言,完全可以自己训练字库.自己训练字库不仅可以提高识别速度,而且可以提高识别精度! 在训练过程中,常见的error有以下几种: 1)index >= 0 && index<size_used_:Error:Assert failed in genericvector.h, line 512 原因: 检查一下训练后type 13的数值.如果为…
Linux内核为大规模支持100Gb/s网卡准备好了吗?并没有 之前用 千兆的机器 下载速度 一般只能到 50MB 左右 没法更高 万兆的话 可能也就是 200MB左右的速度 很难更高 不知道后续的服务器 会不会 能够提升一下 之前坐着说到了 120nm 的时间 发送一个包 记得CPU的指令周期是 -3nm左右 个内存的时间差不多了 不知道RDMA等的方式 可不可能完成相应的高吞吐量的处理. 原作者博客 https://blog.csdn.net/zhoukejun/article/detail…
在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 然后解压文件 文件夹里是一个这个文件 步骤二:安装依赖库 我们需要安装一些依赖库,有numpy.scipy以及gensim,安装gensim依赖于scipy…
对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') flag=1 while(flag): word = input("Please input the key_word:\n") if word in model: print(model['word']) # 词相似度 result = model.most_similar(word) for…
目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训练 输入表征 Fine-tunninng 缺点 ELMo/GPT/BERT对比,其优缺点 BERT-wwm RoBERTa ERNIE(艾尼) 1.0 ERNIE 2.0 XLNet 提出背景 排列语言模型(Permutation Language Model,PLM) Two-Stream Sel…