近年来出现了从单体架构向微服务架构的转变.微服务架构使应用程序更容易扩展和更快地开发,支持创新并加快新功能上线时间.但是这种方法会导致数据存在于不同的孤岛中,这使得执行分析变得困难.为了获得更深入和更丰富的见解,企业应该将来自不同孤岛的所有数据集中到一个地方. AWS 提供复制工具,例如 AWS Database Migration Service (AWS DMS),用于将数据更改从各种源数据库复制到各种目标,包括 Amazon Simple Storage Service (Amazon S…
1. 起源 作为印度最大的在线杂货公司的数据工程师,我们面临的主要挑战之一是让数据在整个组织中的更易用.但当评估这一目标时,我们意识到数据管道频繁出现错误已经导致业务团队对数据失去信心,结果导致他们永远无法确定哪个数据源是正确的并且可用于分析,因此每个步骤都会咨询数据平台团队,数据平台团队原本应该提供尽可能独立地做出基于数据的正确决策而又不减慢速度的工具. 现代数据平台会从许多不同的.不互连的,不同系统中收集数据,并且很容易出现数据收集问题,例如重复记录,错过更新等.为解决这些问题,我们对数据平…
Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简化文件管理和近乎实时的数据访问以及简化的CDC数据管道开发. 本期SOFTWARE DAILY我们有幸采访到了Apache Hudi项目VP Vinoth Chandar.Vinoth是Uber Hudi项目的创建者,他继续在Apache Software Foundation领导Hudi的发展.在…
T 摘要 · 云原生与数据湖是当今大数据领域最热的 2 个话题,本文着重从为什么传统数仓 无法满足业务需求? 为何需要建设数据湖?数据湖整体技术架构.Apache Hudi 存储模式与视图.如何解决冷数据频繁更新.如何在数据湖上进行准实时 分析.数据湖上调度为何选型 Apache DolphinScheduler.二次开发新特性以及规划等多个角度进行了阐述. 讲师介绍 杨华,T3 出行大数据平台负责人.Apache Hudi Committer & PMC.Apache Kylin Commit…
数据湖是大数据近年来的网红项目,大家熟知的开源数据湖三剑客 Apache hudi.Apache iceberg .Databricks delta 近年来野蛮生长,目前各自背后也都有商业公司支持,投入了大量的人力物力去做研发和宣传.然而今天我们要讲的是数据湖界的后起之秀 -- flink-table-store. 熟悉 Flink 项目的同学对这个项目应该并不陌生,它在去年作为 Flink 的子项目加入了 Apache 社区,由 Flink 团队主导研发,截止到目前 star 数 423,fo…
1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amazon S3)是针对结构化和非结构化数据的高性能对象存储服务,可以用来作为数据湖底层的存储服务. 然而许多用例,如从上游关系数据库执行变更数据捕获(CDC)到基于Amazon S3的数据湖,都需要在记录级别处理数据,执行诸如从数据集中插入.更新和删除单条记录的操作需要处理引擎读取所有对象(文件),进行…
1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题: 问题一:不支持事务 由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误.为了规避该问题,通常控制读写任务顺序调用,在保证写任务完成后才能启动读任务.但并不是所有读任务都能够被调度系统约束住,在读取时仍存在该问题.…
1. 摘要 Robinhood 的使命是使所有人的金融民主化. Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础. 我们有各种数据源--OLTP 数据库.事件流和各种第 3 方数据源.需要快速.可靠.安全和以隐私为中心的数据湖摄取服务来支持各种报告.关键业务管道和仪表板. 不仅在数据存储规模和查询方面,也在我们在数据湖支持的用例方面,我们从最初的数据湖版本都取得了很大的进展.在这篇博客中,我们将描述如何使用各种开源工具构建基于变更数据捕获的增量摄取,以将我们核心数…
大家好,我是来自 Juicedata 的高昌健,今天想跟大家分享的主题是<JuiceFS 在数据湖存储架构上的探索>,以下是今天分享的提纲: 首先我会简单的介绍一下大数据存储架构变迁以及它们的优缺点,然后介绍什么是 JuiceFS,其次的话会再重点介绍一下关于 JuiceFS 和数据湖的一些结合和关联,最后会介绍一下 JuiceFS 和数据湖生态的集成. 大数据存储架构变迁 纵观整个大数据存储架构的变迁,可以看到有非常明显的三个阶段:第一个阶段就是从最早的 Hadoop.Hive 等项目诞生之…
面试大数据项目,面试过程中发现面试官提到的两个概念没有搞清楚: 1. lamba数据架构:这个概念的提出是由storm的作者提出来的,其实主旨就是想要说明,数据的处理分成三层,一类是批处理程序(batch laryer,非实时),比如午夜跑出来的报表,可以供第二天进行消费:第二类是实时增量处理数据(speed layer),比如通过kafka等流计算工具进行的实时增量处理:第三层就是service layer,是对外提供服务的层,既可以访问batch layer或者realtime layer,…