题目传送门 可持久化线段树1(主席树) 题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输出格式 输入格式: 第一行包含两个正整数N.M,分别表示序列的长度和查询的个数. 第二行包含N个正整数,表示这个序列各项的数字. 接下来M行每行包含三个整数 $l,r,k$ , 表示查询区间 $[l,r]$ 内的第k小值. 输出格式: 输出包含k行,每行1个正…
P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目背景 UPDATE : 最后一个点时间空间已经放大 标题即题意 有了可持久化数组,便可以实现很多衍生的可持久化功能(例如:可持久化并查集) 题目描述 如题,你需要维护这样的一个长度为 NN 的数组,支持如下几种操作 在某个历史版本上修改某一个位置上的值 访问某个历史版本上的某一位置的值 此外,每进行一次操作(对于操作2,即为生成一个完全一样的版本,不作任何改动),就会生成一个新的版本.版本编号即为当前操作的编号(从1开始编号,版本0…
题目描述 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的 想法当然非常好啦,但是她们也发现她们面临着一个问题,那就是店开在哪里,面 向什么样的人群.很神奇的是,幻想乡的地图是一个树形结构,幻想乡一共有 n 个地方,编号为 1 到 n,被 n-1 条带权的边连接起来.每个地方都住着一个妖怪, 其中第 i 个地方的妖怪年龄是 x_i.妖怪都是些比较喜欢安静的家伙,所以它们并 不希望和很多妖怪相邻.所以这个…
[模板]可持久化线段树 1(主席树) https://www.luogu.org/problemnew/show/P3834 主席树支持历史查询,空间复杂度为O(nlogn),需要动态开点 本题用一个类似于前缀和的思想,离散化之后 用主席树维护每一个前缀的“桶”数组 #include<iostream> #include<cstdio> #include<algorithm> using namespace std; #define MAXN 200020 ],rc[M…
题目链接 主席树=可持久化权值线段树. 如果你不会可持久化线段树,请右转 如果你不会权值线段树,请自行脑补,就是线段树维护值域里有多少个数出现. 可持久化线段树是支持查询历史版本的. 我们对每个数都进行一次基于上个版本的单点修改操作,这样每个版本就是维护的前\(p\)个数,这个权值显然满足可减性. 所以,要查询区间\([l,r]\)的第\(k\)大时,我们就用第\(r\)个版本减去第\(l-1\)个版本,我们就得到了一颗\([l,r]\)的权值线段树,然后跑第\(k\)小就简单了: 如果左儿子有…
[BZOJ3681]Arietta Description Arietta 的命运与她的妹妹不同,在她的妹妹已经走进学院的时候,她仍然留在山村中.但是她从未停止过和恋人 Velding 的书信往来.一天,她准备去探访他.对着窗外的阳光,临行前她再次弹起了琴.她的琴的发声十分特殊.让我们给一个形式化的定义吧.所有的 n 个音符形成一棵由音符 C ( 1 号节点) 构成的有根树,每一个音符有一个音高 Hi .Arietta 有 m 个力度,第 i 个力度能弹出 Di 节点的子树中,音高在 [Li,R…
[BZOJ4704]旅行 Description 在Berland,有n个城堡.每个城堡恰好属于一个领主.不同的城堡属于不同的领主.在所有领主中有一个是国王,其他的每个领主都直接隶属于另一位领主,并且间接隶属于国王.一位领主可以拥有任意数量的下属.这些城堡被一些双向的道路连接.两个城堡是连接的当且仅当他们的主人中一位直接隶属于另一位.每一年,在Berland会发生以下两件事中的一件:1.野蛮人攻击了城堡c.这是城堡c第一次也会是最后一次被攻击,因为野蛮人从来不攻击同一座城堡超过一次.2.一个骑士…
Luogu P3834 可持久化数据结构就是支持在历史版本上进行查询和修改操作的数据结构. 主席树就是对线段树的改进,使之可持久化. 前置知识:动态开点线段树 我们利用权值(值域)线段树统计区间内的数出现的次数. (权值线段树类似于线段树+桶) 那么我们可以对每一个位置建立一棵线段树,维护\(1\)~\(i\)的数据在一个区间上出现的次数. 求\(a[l...r]\)第k小,可以令第\(r\)棵线段树在区间\([x,y]\)上出现的次数减去上第\(l-1\)棵的线段树在区间\([x,y]\)上出…
题面 太长了,而且解释的不清楚,我来给个简化版的题意: 给定一棵$n$个点的数,每个点有点权,你需要实现以下$m$个操作 操作1,把$x$到$y$的路径上的所有点的权值都加上$delta$,并且更新一个版本 操作2,对于有向路径$(x,y)$上的点$a_i$,求下面的和值: $\sum_{i=1}^{len} a_i \sum_{j=1}^{len-i} j$ 操作3,回到第$i$个版本(但是下一次更新以后还是到总版本号+1的那个版本) 思路 这个题显然一眼就是树剖+可持久化数据结构啊 那么核心…
题目链接 //离散化后范围1~cnt不要错 #include<cstdio> #include<cctype> #include<algorithm> //#define gc() getchar() #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++) const int N=2e5+5,MAXIN=2e6; int n,m,A[N],ref[N],cn…