数据仓库的建设是“数据智能”必不可少的一环,也是大规模数据应用中必然面临的挑战.在智能商业中,数据的结果代表了用户反馈.获取数据的及时性尤为重要.快速获取数据反馈能够帮助公司更快地做出决策,更好地进行产品迭代,实时数仓在这一过程中起到了不可替代的作用. 如何更好的建设实时数仓.有哪些优秀的生产实践经验可借鉴? 11月28-30日,Flink Forward Asia 邀请来自 Netflix.美团点评.小米.OPPO.菜鸟等数仓专家,聚焦 Flink 实时数仓在数据链路中扮演的角色与在智能商业中…
https://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651749037&idx=1&sn=4a448647b3dae50779bc9ec0e9c10275&chksm=bd12a3e08a652af6ed8b305b0523716e08a81cf99296425cdaf2bbee1e9d8a6aca06c81cdcc1&scene=21#wechat_redirect 总第291篇 2018年 第83篇 引言…
一.概述 Apache Kafka 发展至今,已经是一个很成熟的消息队列组件了,也是大数据生态圈中不可或缺的一员.Apache Kafka 社区非常的活跃,通过社区成员不断的贡献代码和迭代项目,使得 Apache Kafka 功能越发丰富.性能越发稳定,成为企业大数据技术架构解决方案中重要的一环. Apache Kafka 作为一个热门消息队列中间件,具备高效可靠的消息处理能力,且拥有非常广泛的应用领域.那么,今天就来聊一聊基于 Kafka 的实时数仓在搜索的实践应用. 二.为什么需要 Kafk…
阿里云 AnalyticDB for PostgreSQL 为采用MPP架构的分布式集群数据库,完备支持SQL 2003,部分兼容Oracle语法,支持PL/SQL存储过程,触发器,支持标准数据库事务ACID.AnalyticDB PG通过行存储.列存储.多种分区表和索引等机制,可以支持海量数据的交付分析,也支持ETL批处理任务. AnalyticDB PG 6.0 版本大幅提升并发事务处理能力,更好的满足实时数仓场景,同时通过事务锁等优化,完备支持HTAP业务.AnalyticDB PG 6.…
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 随着数据的应用场景越来越丰富,企业对数据价值反馈到业务中的时效性要求也越来越高,很早就有人提出过一个概念: 数据的价值在于数据的在线化.实时计算起源于对数据加工时效性的严苛需求:数据的业务价值随着时间的流逝会迅速降低,因此在数据产生后必须尽快对其进行计算和处理,从而最大效率实现数据价值转化,对实时数仓的建设需求自然而然的诞生了.而建设好实时数仓需要解决如下几个问题: 一.稳定性:实时数仓对数据的实时处理必须是可…
目录: 一. 实时计算初期 二. 实时数仓建设 三. Lambda架构的实时数仓 四. Kappa架构的实时数仓 五. 流批结合的实时数仓 实时计算初期 虽然实时计算在最近几年才火起来,但是在早期也有部分公司有实时计算的需求,但是数据量比较少,所以在实时方面形成不了完整的体系,基本所有的开发都是具体问题具体分析,来一个需求做一个,基本不考虑它们之间的关系,开发形式如下: 早期实时计算 如上图所示,拿到数据源后,会经过数据清洗,扩维,通过Flink进行业务逻辑处理,最后直接进行业务输出.把这个环节…
第一章.flink实时数仓入门 一.依赖 <!--Licensed to the Apache Software Foundation (ASF) under oneor more contributor license agreements. See the NOTICE filedistributed with this work for additional informationregarding copyright ownership. The ASF licenses this fi…
转:https://mp.weixin.qq.com/s/e8lsGyl8oVtfg6HhXyIe4A AI 前线导读:“数据智能” (Data Intelligence) 有一个必须且基础的环节,就是数据仓库的建设,同时,数据仓库也是公司数据发展到一定规模后必然会提供的一种基础服务.从智能商业的角度来讲,数据的结果代表了用户的反馈,获取结果的及时性就显得尤为重要,快速的获取数据反馈能够帮助公司更快的做出决策,更好的进行产品迭代,实时数仓在这一过程中起到了不可替代的作用. 更多优质内容请关注微信…
一.数仓分层介绍 1.实时计算与实时数仓 实时计算实时性高,但无中间结果,导致复用性差 实时数仓基于数据仓库,对数据处理规划.分层,目的是提高数据的复用性 2.电商数仓的分层 ODS:原始日志数据和业务数据 DWD:以数据对象为单位进行分流,如订单.页面访问等 DIM:维度数据 DWM:数据对象进一步加工,形成宽表&明细数据[明细宽表] DWS:根据主题对数据聚合,形成主题宽表[主题宽表] ADS:将CLickHouse中的数据根据需求进行筛选聚合 二.实时需求概览 1.离线计算与实时计算 离线…
https://mp.weixin.qq.com/s/hx-q13QteNvtXRpNsE5Y0A 作者 | 知乎数据工程团队编辑 | VincentAI 前线导读:“数据智能” (Data Intelligence) 有一个必须且基础的环节,就是数据仓库的建设,同时,数据仓库也是公司数据发展到一定规模后必然会提供的一种基础服务.从智能商业的角度来讲,数据的结果代表了用户的反馈,获取结果的及时性就显得尤为重要,快速的获取数据反馈能够帮助公司更快的做出决策,更好的进行产品迭代,实时数仓在这一过程中…