[源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 目录 [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 0x00 摘要 0x01 痛点 0x02 难点 0x03 TorchElastic 3.1 历史 3.1.1 PyTorch 1.7 3.1.2 PyTorch 1.9 3.2 设计理念 3.2.1 基本功能 3.2.2 新设计概述 3.2.3 bare-bones 3.3 小结 0x04 问题 4.1 VS Horovod 4.2 TE 问题 0…
[源码解析] PyTorch 分布式之弹性训练(5)---Rendezvous 引擎 目录 [源码解析] PyTorch 分布式之弹性训练(5)---Rendezvous 引擎 0x00 摘要 0x01 前言 1.1 总体系统 1.2 Rendezvous 1.3 解耦 0x02 引擎实现 2.1 基类 2.2 分布式操作引擎 2.2.1 定义 2.2.2 调用 2.2.2.1 _RendezvousKeepAliveOp 2.2.2.2 _RendezvousCloseOp 2.2.2.3 _…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com CNN的层数越多,能够提取到的特征越丰富,但是简单地增加卷积层数,训练时会导致梯度弥散或梯度爆炸. 何凯明2015年提出了残差神经网络,即Reset,并在ILSVRC-2015的分类比赛中获得冠军. ResNet可以有效的消除卷积层数增加带来的梯度弥散或梯度爆炸问题. ResNet的核心思想是网络输出分为2部分恒等映射(identity mapping).残差映射(residual mapping)…
一.pytorch与tensorboard结合使用 Tensorboard Tensorboard一般都是作为tf的可视化工具,与tf深度集成,它能够展现tf的网络计算图,绘制图像生成的定量指标图以及附加数据等.此外,Tensorboard也是一个独立工具,只要保存的数据遵循一定的格式,Tensorboard就可以读取这些数据并进行可视化 将网络结构.动态数值以 protocol buffer 格式写到文件里. 读取网络结构.读取动态数值,并展示在浏览器中. Tensorboard_logger…
[源码解析] PyTorch 分布式之弹性训练(2)---启动&单节点流程 目录 [源码解析] PyTorch 分布式之弹性训练(2)---启动&单节点流程 0x00 摘要 0x01 重要概念 0x02 分布式运行 2.1 方式改变 2.1.1 原有方式 2.1.2 目前方式 2.2 部署 2.3 示例 2.3.1 单节点多worker启动 2.3.2 容错方式启动 2.3.3 弹性方式启动 0x03 启动脚本 3.1 参数定义 3.2 相关函数/变量 world_size,rank _p…
[源码解析] PyTorch 分布式之弹性训练(3)---代理 目录 [源码解析] PyTorch 分布式之弹性训练(3)---代理 0x00 摘要 0x01 总体背景 1.1 功能分离 1.2 Rendezvous 0x02 Agent 总体逻辑 2.1 功能 2.2 工作基础 2.3 部署 2.4 基类 0x03 Worker 3.1 Worker 定义 3.2 WorkerGroup 3.3 WorkerState 0x04 SimpleElasticAgent 4.1 总体运行 4.2…
[源码解析] PyTorch 分布式之弹性训练(4)---Rendezvous 架构和逻辑 目录 [源码解析] PyTorch 分布式之弹性训练(4)---Rendezvous 架构和逻辑 0x00 摘要 0x01 总体背景 0x02 基本概念 2.1 Barrier 2.2 排他性(Exclusivity) 2.3 一致性(Consistency) 2.4 容错(Fault-tolerance) 2.5 共享键值存储 2.6 等待worker和rendezvous关闭 2.7 DynamicR…
[源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 目录 [源码解析] PyTorch 分布式之弹性训练(6)---监控/容错 0x00 摘要 0x01 总体逻辑 1.1 Node集群角度 1.2 Agent总体逻辑图 1.3 监控角度 0x02 多进程 2.1 启动workers 2.1.1 start_processes 2.1.2 RunResult 2.1 TE 使用 2.2 PContext 2.3 MultiprocessContext 2.3.1 start 2.…
[源码解析] PyTorch 分布式之弹性训练(7)---节点变化 目录 [源码解析] PyTorch 分布式之弹性训练(7)---节点变化 0x00 摘要 0x01 变化方式 1.1 Scale-down 1.2 Scale-up 0x02 节点加入 2.1 新节点加入 2.2 处理 Join 操作 2.2.1 run处理 2.2.2 Join操作 2.2.3 等待业务操作 2.3 Agent 处理 2.3.1 检查等待列表 2.3.3 重启worker组 2.3.3.1 _stop_work…
本文目录 查看实体当前.原始和数据库值:DbEntityEntry 查看实体的某个属性值:GetValue<TValue>方法 拷贝DbPropertyValues到实体:ToObject方法 修改DbPropertyValues当前值:索引器 克隆实体:Clone方法 设置实体的值:SetValues方法 克隆实体:SetValues 获取和设置实体的单个属性:Property方法 查询实体的属性是否被修改:IsModified方法 修改导航属性 重新加载实体:Reload方法 读取相关联的…