VAE-可变自动编码器】的更多相关文章

本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立删 http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf 摘要 我们提出了一种利用变分自动编码器重构概率的异常检测方法.重建概率是一种考虑变量分布变异性的概率度量.重建概率具有一定的理论背景,使其比重建误差更具有原则性和客观性,而重建误差是自…
在本文中,我想将经典数学建模和机器学习之间建立联系,它们以完全不同的方式模拟身边的对象和过程.虽然数学家基于他们的专业知识和对世界的理解来创建模型,而机器学习算法以某种隐蔽的不完全理解的方式描述世界,但是在大多数情况下甚至比专家开提出的数学模型更准确.然而,在许多应用程序(如医疗保健,金融,军事)中,我们需要清晰可解释的决策,而机器学习算法,特别是深度学习模型并不是这样设计的. 本文将回顾所期望模型的的主要特点,"经典"数学模型和机器学习模型的优点和缺点,并展示一个结合了两种模型特点的…
目录 原文链接: 小样本学习与智能前沿 01 Multitask Learning 01.1 Parameter Sharing 01.2 Parameter Tying. 02 Embedding Learning 02.1 Task-Specific Embedding Model. 02.2 Task-Invariant Embedding Model. 02.3 Hybrid Embedding Model. 03 Learning with External Memory 03.1 R…
博客作者:凌逆战 论文地址:https://ieeexplore.ieee.xilesou.top/abstract/document/8683611/ 地址:https://www.cnblogs.com/LXP-Never/p/10714401.html 利用条件变分自动编码器进行人工带宽扩展的潜在表示学习 作者:Pramod Bachhav, Massimiliano Todisco and Nicholas Evans 摘要 当宽带设备与窄带设备或基础设施一起使用时,人工带宽扩展(ABE…
学习总结于国立台湾大学 :李宏毅老师 自编码器 AE (Auto-encoder)    & 变分自动编码器VAE(Variational Auto-encoder)                    学习编码解码过程,然后任意输入一个向量作为code通过解码器生成一张图片. VAE与AE的不同之处是:VAE的encoder产生与noise作用后输入到decoder            VAE的问题:VAE的decoder的输出与某一张越接近越好,但是对于机器来说并没有学会自己产生real…
VAE(Variational Autoencoder)   生成式模型 理论: 基于贝叶斯公式.KL散度的推导 1. 自动编码器的一般结构 2. 产生一幅新图像 输入的数据经过神经网络降维到一个编码(code),接着又通过另外一个神经网络去解码得到一个与输入原数据一模一样的生成数据,然后通过去比较这两个数据,最小化他们之间的差异来训练这个网络中编码器和解码器的参数.当这个过程训练完之后,我们可以拿出这个解码器,随机传入一个编码(code),希望通过解码器能够生成一个和原数据差不多的数据,上面这…
Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013). 论文的理论推导见:https://zhuanlan.zhihu.com/p/25401928 中文翻译为:变分自动编码器 转自:http://kvfrans.com/variational-autoencoders-explained/ 下面是VAE的直观解释,不需…
变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以探索声音.音乐甚至文本的潜在空间: VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;  GAN生成的图像可能非常逼真,但它的潜在空间可能没有良好结构,也没有足够的连续型.   自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程. 原来有很多 Feature,…
自动编码器是一种有三层的神经网络:输入层.隐藏层(编码层)和解码层.该网络的目的是重构其输入,使其隐藏层学习到该输入的良好表征. 自动编码器神经网络是一种无监督机器学习算法,其应用了反向传播,可将目标值设置成与输入值相等.自动编码器的训练目标是将输入复制到输出.在内部,它有一个描述用于表征其输入的代码的隐藏层. 自动编码器的目标是学习函数 h(x)≍x.换句话说,它要学习一个近似的恒等函数,使得输出 x^ 近似等于输入 x.自动编码器属于神经网络家族,但它们也和 PCA(主成分分析)紧密相关.…
基本概念 "变分自动编码器"(Variational Autoencoders,缩写:VAE)的概念来自Diederik P Kingma和Max Welling的论文<Auto-Encoding Variational Bayes>.现在有了很广泛的应用,应用范围已经远远超出了当时论文的设想.不过看起来似乎,国内还没有见到什么相关产品出现. 作为普及型的文章,介绍"变分自动编码器",要先从编码说起. 简单说,编码就是数字化,前面第六篇我们已经介绍了一些…