文本行检测到之后,我们开始寻找单词和字母之间的间隙,这一次,我们运用了水平直方图,将大的间隙假设为单词之间的空隙,小的间隙理解为字母之间的空隙,检测缅甸文本中的空隙几乎没有出现问题,不像泰语,几乎没有空隙.(我们的OCR技术可以识别泰语文本,多达200种其他语言) 将文本行划分为更小的片段之后,我们尝试将片段划分为单个字符,再一次在直方图上观察高峰和低谷值,低谷对应于字母之间的可能间隙,有些间隙可以很确定地检测到,有些则需要通过各种试探法进行验证. 以下图形展示了英语单词的直方图: 缅甸脚本中的…
今日的验证码之旅 今天你要学习的验证码采用通过第三方AI平台开放的OCR接口实现,OCR文字识别技术目前已经比较成熟了,而且第三方比较多,今天采用的是百度的. 注册百度AI平台 官方网址:http://ai.baidu.com/ 接下来申请 接下来创建一个简单应用之后,就可以使用了,我们找到 阅读文字识别相关文档 你需要具备基本的阅读第三方文档的能力,打开我们需要的文档 https://cloud.baidu.com/doc/OCR/OCR-API.html#.E9.80.9A.E7.94.A8…
工具 Tesseract pytesseract tesserocr 朋友需要一个工具,将图片中的文字提取出来.我帮他在网上找了一些OCR的应用,都不好用.所以准备自己研究,写一个Web APP供他使用. OCR1,全称Optical character recognition,或者optical character reader,中文译名叫做光学文字识别.它是把图像文件中的手写文本,打印文本转换为机器编码文本的一种方法. OCR技术广泛用于识别打印纸张中的文字数据 -- 比如护照,支票,银行声…
CRNN是OCR领域非常经典且被广泛使用的识别算法,其理论基础可以参考我上一篇文章,本文将着重讲解CRNN代码实现过程以及识别效果. 数据处理 利用图像处理技术我们手工大批量生成文字图像,一共360万张图像样本,效果如下: 我们划分了训练集和测试集(10:1),并单独存储为两个文本文件: 文本文件里的标签格式如下: 我们获取到的是最原始的数据集,在图像深度学习训练中我们一般都会把原始数据集转化为lmdb格式以方便后续的网络训练.因此我们也需要对该数据集进行lmdb格式转化.下面代码就是用于lmd…
核心内容:车牌识别.OCR识别技术.移动端车牌识别.手机端车牌识别.安卓车牌识别.Android车牌识别.iOS车牌识别 一.移动端车牌识别OCR技术研发原理 移动端车牌识别是基于OCR识别的一种应用.移动端车牌识别OCR技术识别过程包括图像采集.图像预处理.车牌定位.字符分割.字符识别.输出结果等一系列算法运算,其流程如下图所示: 其中图像采集是通过视频流识别,对视频进行解帧识别,移动端车牌识别OCR技术的识别速度为毫秒级别,体验起来比扫二维码还快. 二.移动端车牌识别OCR技术应用背景 随着…
上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN,那具体使用哪个经典网络?VGG?RESNET?还是其他?我想了下,越深的网络训练得到的模型应该会更好,但是想到训练的难度以及以后线上部署时预测的速度,我觉得首先建立一个比较浅的网络(基于LeNet的改进)做基本的文字识别,然后再根据项目需求,再尝试其他的网络结构.这次任务所使用的深度学习框架是强大…
腾讯的python SDK没有通用印刷体识别,所以参考了别人识别网上图片的方式:https://www.cnblogs.com/semishigure/p/7690789.html 但是咱们使用的基本都是识别本地图片,所以要采用image方式: #!/usr/bin/env python # -*- coding: utf-8 -*- #import docx import requests import hmac import hashlib import base64 import time…
在以前的OCR任务中,识别过程分为两步:单字切割和分类任务.我们一般都会讲一连串文字的文本文件先利用投影法切割出单个字体,在送入CNN里进行文字分类.但是此法已经有点过时了,现在更流行的是基于深度学习的端到端的文字识别,即我们不需要显式加入文字切割这个环节,而是将文字识别转化为序列学习问题,虽然输入的图像尺度不同,文本长度不同,但是经过DCNN和RNN后,在输出阶段经过一定的翻译后,就可以对整个文本图像进行识别,也就是说,文字的切割也被融入到深度学习中去了. 现今基于深度学习的端到端OCR技术有…
上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建.用深度学习做文字识别,用的网络当然是CNN,那具体使用哪个经典网络?VGG?RESNET?还是其他?我想了下,越深的网络训练得到的模型应该会更好,但是想到训练的难度以及以后线上部署时预测的速度,我觉得首先建立一个比较浅的网络(基于LeNet的改进)做基本的文字识别,然后再根据项目需求,再尝试其他的网络结构.这次任务所使用的深度学习框架是强大…
最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解.所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解. 什么是OCR? OCR英文全称是Optical Character Recognition,中文叫做光学字符识别.它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受.人又可以理解的格式.文字识别是计算机视觉研究领域的分支之一,而且这个课题已经是比较成熟了,并且在商业中已经有很多落地项…