PhantomJS 是一个基于WebKit的服务器端 JavaScript API.它全面支持web而不需浏览器支持,其快速,原生支持各种Web标准: DOM 处理, CSS 选择器, JSON, Canvas, 和 SVG.PhantomJS可以用于页面自动化,网络监测,网页截屏,以及无界面测试等. #下载PhantomJS安装包 wget https://bitbucket.org/ariya/phantomjs/downloads/phantomjs-2.1.1-linux-x86_64.…
专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 老猿在windows下装了2套Python,一套是直接安装的Python3.7,一套是通过安装Anaconda3时安装的,版本也是3.7,结果今天安装一个模块后,进入Python37后找不到该模块,才想起是安装了两个Python导致.那么在windows下pip安装模块时安装到哪个Python环境是怎么决定的呢?是通过path环境变量来指定的,在path环境变量中,哪…
今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战>.本篇论文主要以扑克进行实验,探讨深度强化学习与普通强化学习相比的优势.研究此类游戏不只是可以让程序打赢人类大师,还可以帮助开发算法,应用于更复杂的真实世界环境中,例如机场和网络安全.金融和能源贸易.交通管制和疏导,帮助人们在不完美的信息和高维度信息状态空间中进行决策.深度强化学习不需要依赖人类专家的原有…
[入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为.这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论.控制论.运筹学.信息论.模拟优化方法.多主体系统学习.群体智能.统计学以及遗传算法.在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”(approximate dynamic program…
引言 最近实验室的项目需要用到强化学习的有关内容,就开始学习起强化学习了,这里准备将学习的一些内容记录下来,作为笔记,方便日后忘记了好再方便熟悉,也可供大家参考.该篇为强化学习开篇文章,主要概括一些有关强化学习的内容,以帮助了解什么是强化学习,以及学习方向,部分涉及到的内容将会在后面的篇章中展开详细的叙述.推荐课程(Utubu上的,需FQ),B站上也有. 基础概念和实际运用 定义 首先先看一段定义:Reinforcement learning is learning what to do—how…
强化学习(Reinforcement Learning)简介 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为. 它主要包含四个元素,环境状态,行动,策略,奖励, 强化学习的目标就是获得最多的累计奖励.RL考虑的是智能体(Agent)与环境(Environment)的交互问题,其中的agent可以理解为学习的主体,它一般是咱们设计的强…
什么是强化学习? 强化学习(Reinforcement learning,简称RL)是和监督学习,非监督学习并列的第三种机器学习方法,如下图示: 首先让我们举一个小时候的例子: 你现在在家,有两个动作选择:打游戏和读书.如果选择打游戏的话,你就跑到了网吧,选择读书的话,就坐在了书桌面前.你爸妈下班回家,如果发现你在网吧,就会给你一套社会主义的铁拳,如果你在书桌面前的话,就会买根棒棒糖给你吃. 首先,你在家的时候并不知道选择哪一个动作,因此你可能会选择study或者game.但是,当你接受了多次社…
一.问题引入 回顾上篇强化学习 2 -- 用动态规划求解 MDP我们使用策略迭代和价值迭代来求解MDP问题 1.策略迭代过程: 1.评估价值 (Evaluate) \[v_{i}(s) = \sum_{a\in A} \pi(a|s) \left( {\color{red}R(s, a)} + \gamma \sum_{s' \in S} {\color{red}P(s'|s, a)} \cdot v_{i-1}(s') \right) \] 2.改进策略(Improve) \[q_i(s,a)…
在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learning算法. Q-Learning这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分. 1. Q-Learning算法的引入 Q-Learning算法是一种使用时序差分求解强化学习控制问题的方法,回顾下此时我们的控制问题可以表示为:给定强化学习的5个要素:状态集$S$, 动作集$A…
1.时序差分法基本概念 虽然蒙特卡洛方法可以在不知道状态转移概率矩阵的前提下,灵活地求解强化学习问题,但是蒙特卡洛方法需要所有的采样序列都是完整的状态序列.如果我们没有完整的状态序列就无法用蒙特卡洛方法求解.此外蒙特卡洛方法的高方差依然存在. 时序差分法简称为TD法.TD法是一种结合蒙特卡洛法和动态规划法的方法.从算法的结构来看,TD法和蒙特卡洛法类似,都是“无模型学习” 的方法,也同样通过采样模拟交互序列的方法进行求解. 时序差分法和蒙特卡洛方法的区别主要有: 1)蒙特卡洛方法要等到最后结果才…