题目链接 题意 给定 \(x,p,k\),求大于 \(x\) 的第 \(k\) 个与 \(p\) 互质的数. 思路 参考 蒟蒻JHY. 二分答案 \(y\),再去 \(check\) 在 \([x,y]\) 区间中是否有 \(k\) 个与 \(p\) 互质的数. \(check\) 采用容斥,将 \(p\) 质因数分解,用这些质数组合成的数在 \([1,y]\) 范围内 容斥. Code #include <bits/stdc++.h> using namespace std; typedef…
题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值,那么s1 = v/x是能被x整除的个数 s2 = v/y是能被y整除数的个数,s3 = v/lcm(x, y)是能被x,y的最小公倍数 整除的个数! 那么 v-s1>=c1 && v-s2>=c2 && v-s3>=c1+c2就是二分的条件! #includ…
直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增),然后就是如何快速$ck()$ 首先观察到,$\lfloor \frac{n}{i^2} \rfloor$是$i^2$筛出来的完全平方数(和其倍数)的个数,但是显然这么筛会筛重一些数. 于是:容斥叭$qwq$ 考虑如何配系数:所有数-被一个素因子的平方筛掉的+被两个素因子的平方筛掉的-被三个素因子的平…
题意: 定义F(x,p)表示的是一个数列{y},其中gcd(y,p)=1且y>x 给出x,p,k,求出F(x,p)的第k项 x,p,k<=10^6 分析: 很容易想到先二分,再做差 然后问题就变成了[1,x]内有多少个数是和p互质的 我们可以先将p质因数分解,然后用这些数组合去在[1,x]容斥就行了 long long cal(long long x) { int n=f.size(); ; ;i<(<<n);++i) { ; ; ;j<n;++j) <<j…
920G - List Of Integers 思路:容斥+二分 代码: #include<bits/stdc++.h> using namespace std; #define ll long long #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) vector<int>p; ll ans=; void dfs(int k,int cnt,ll s,ll r){ if(k==p.size()){ )ans-…
题目描述 KJDH是个十分善于探索的孩子,有一天他把分子分母小于等于n的最简分数列在了纸上,他想找到这些分数里第k小的数,这对于KJDH来说当然是非常轻易,但是KJDH最近多了很多妹子,他还要去找妹子聊天,所以这个任务就交给你了. 输入 输入文件只有一行,两个数n,k,保证输入合法. 输出 输出文件包含两个用空格隔开的数,x,y,表示第k小的分数x/y. 样例输入 5 6 100 200 样例输出 3 5 6 91 提示 n=5时,有这些分数1/2,1/3,2/3,1/4,3/4,1/5,2/5…
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分答案x,问题转化为求[1,x]间有多少个没有完全平方因子的数. 容斥,加上全部,减去一个质数的平方的倍数个数,加上两个质数乘积的平方的倍数个数... 然后发现,每个数的系数就是µ 这也说明了莫比乌斯的原理就是容斥,µ函数就是容斥系数 具体来说,对于每一个i<=sqrt(x),对于ans的贡献就是µ[i]…
描述两个数的a,b的gcd为1,即a,b互质,现在给你一个数m,你知道与它互质的第k个数是多少吗?与m互质的数按照升序排列. 输入 输入m ,k (1<=m<=1000000;1<=k<=100000000) 输出 输出第k个数. 样例输入 10 1 10 2 10 3 样例输出 1 3 7 首先对m进行质因数分解,求出m有哪些质因数,然后用容斥求[1, mid]内与m互质的数有多少个. 判断的时候,[1,mid]之间与m互质的数的数量 = mid - (包含一个质因子的数的个数)…
题目链接:https://vjudge.net/problem/POJ-2773 题意:给定m,k,求与m互质的第k个数. 思路一:利用gcd(a,b)=gcd(b*t+a,b)知道,与m互质的数是以m为周期分布的,这样可以先枚举小于m的所有与m互质的数,利用周期就可以得到第k小的数了,这样复杂度为O(T*m),比较大,但也能过,2439ms,代码实现相对简单. AC代码: #include<cstdio> using namespace std; int gcd(int a,int b){…
题意: Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers such that gcd(a1, a2, ..., an) = xand . As this number could be large, print the answer modulo 109 + 7. 解法: 变成1+1+...+1=y/x ,用隔板法就知道有2^(y/x-1)个解 但是考虑到…