前言:我在github上创建了一个新的repo:PaddleAI, 准备用Paddle做的一系列有趣又实用的案例,所有的案例都会上传数据代码和预训练模型,下载后可以在30s内上手,跑demo出结果,让大家尽快看到训练结果,用小批量数据调试,再用全量数据跑模型,当然,也可以基于我上传的预训练模型进行迁移学习,如果大家有需要的话.今天刚写好第一个项目,用Paddle做广告CTR预估,来源于Kaggle的比赛Display Advertising Challenge, 感兴趣的读者往下看-(也可以留言…
https://zhuanlan.zhihu.com/p/35465875 学习和预测用户的反馈对于个性化推荐.信息检索和在线广告等领域都有着极其重要的作用.在这些领域,用户的反馈行为包括点击.收藏.购买等.本文以点击率(CTR)预估为例,介绍常用的CTR预估模型,试图找出它们之间的关联和演化规律. 数据特点 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特…
原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张伟楠博士在携程深度学习Meetup[1]上分享了Talk<Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction in Display Ads>.他在2016 ECIR发表…
众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有一定的内在关联性.比如,图像中会有大量的像素与周围的像素比较类似:文本数据中语言会受到语法规则的限制.CNN对于空间特征有很好的学习能力,正如RNN对于时序特征有强大的表示能力一样,因此CNN和RNN在上述领域各领风骚好多年. 在Web-scale的搜索.推荐和广告系统中,特征数据具有高维.稀疏.多…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]如果你对智能推荐感兴趣,欢迎先浏览我的另一篇随笔:智能推荐算法演变及学习笔记 [最后再说一下]本文只对智能推荐算法中的CTR预估模型演变进行具体介绍! 一.传统CTR预估模型演变 1. LR 即逻辑回归.LR模型先求得各特征的加权和,再添加sigmoid函数. 使用各特征的加权和,是为了考虑不同特征的重要程度 使用sigmoid函数,是为了将值映射到 [0, 1…
从FM推演各深度CTR预估模型(附代码) 2018年07月13日 15:04:34 阅读数:584 作者: 龙心尘 && 寒小阳 时间:2018年7月 出处: 龙心尘 寒小阳…
背景 假设现在有个商品点击预测的任务,有用户端特征性别.年龄.消费力等,商品侧特征价格.销量等,样本为0或者1,现在对特征进行one hot encode,如性别特征用二维表示,男为[1,0],女为[0,1],其他特征相同处理后拼接起来一共有n维,n是所有特征的类别数之和. Logistic Regression(LR)与二阶 线性模型,y = sigmoid(w, x),w有n维,优点是简单易解释,缺点是太简单,无法挖掘特征组合的情况,如男性+游戏类商品可能是个很强特征.为了弥补这个缺点往往需…
http://wenku.baidu.com/course/view/1488bfd5b9f3f90f76c61b8d…
计算广告领域中数据特点:    1 正负样本不平衡    2 大量id类特征,高维,多领域(一个类别型特征就是一个field,比如上面的Weekday.Gender.City这是三个field),稀疏 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特征通常以独热编码(one-hot encoding)的方式转化为高维稀疏二值向量,多个域(类别)对应的编码向量…
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010352603/article/details/80681100 计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与…
ctr预估简单的解释就是预测用户的点击item的概率.为什么一个回归的问题需要使用分类的方法来评估,这真是一个好问题,尝试从下面几个关键问题去回答. 1.ctr预估是特殊的回归问题 ctr预估的目标函数为 f(x)=P(+1|x) 特殊之处在于目标函数的值域为[0,1],而且由于是条件概率,具有如下特性 如果将ctr预估按照一般的回归问题处理(如使用Linear Regression),面临的问题是一般的linear regression的值域范围是实数域,对于整个实数域的敏感程度是相同的,所以…
原文:http://wbj0110.iteye.com/blog/2043065 该文是百度文库课程<计算广告学之内容匹配广告&展示广告原理.技术和实践>的课程笔记,感谢百度! 课程地址http://wenku.baidu.com/course/view/1488bfd5b9f3f90f76c61b8d 第三章:网盟CTR预估 第三章主要包括三小节:CTR预估背景,CTR预估特点,CTR预估模型 CTR即广告点击率   第一节:CTR预估背景 在点击计费时,用得最多的是广义二阶价格拍卖…
1.CTR CTR预估是对每次广告的点击情况做出预测,预测用户是点击还是不点击. CTR预估和很多因素相关,比如历史点击率.广告位置.时间.用户等. CTR预估模型就是综合考虑各种因素.特征,在大量历史数据上训练得到的模型. CTR预估的训练样本一般从历史log.离线特征库获得. 样本标签相对容易,用户点击标记为1,没有点击标记为0.特征则会考虑很多,例如用户的人口学特征.广告自身特征.广告展示特征等.这些特征中会用到很多类别特征,例如用户所属职业.广告展示的IP地址等.一般对于类别特征会采样O…
pytorch的并行分为模型并行.数据并行 左侧模型并行:是网络太大,一张卡存不了,那么拆分,然后进行模型并行训练. 右侧数据并行:多个显卡同时采用数据训练网络的副本. 一.模型并行 二.数据并行 数据并行的操作要求我们将数据划5分成多份,然后发送给多个 GPU 进行并行的计算. 注意:多卡训练要考虑通信开销的,是个trade off的过程,不见得四块卡一定比两块卡快多少,可能是训练到四块卡的时候通信开销已经占了大头 下面是一个简单的示例.要实现数据并行,第一个方法是采用 nn.parallel…
今天第二篇(最近更新的都是Deep模型,传统的线性模型会后面找个时间更新的哈).本篇介绍华为的DeepFM模型 (2017年),此模型在 Wide&Deep 的基础上进行改进,成功解决了一些问题,具体的话下面一起来看下吧. 原文:Deepfm: a factorization-machine based neural network for ctr prediction 地址:http://www.ijcai.org/proceedings/2017/0239.pdf 1.问题由来 1.1.背景…
原论文:Deep learning over multi-field categorical data 地址:https://arxiv.org/pdf/1601.02376.pdf 一.问题由来 基于传统机器学习模型(如LR.FM等)的CTR预测方案又被称为基于浅层模型的方案,其优点是模型简单,预测性能较好,可解释性强:缺点主要在于很难自动提取高阶组合特征携带的信息,目前一般通过特征工程来手动的提取高阶组合特征.而随着深度学习在计算机视觉.语音识别.自然语言处理等领域取得巨大成功,其在探索特征…
[源码解析] 模型并行分布式训练Megatron (2) --- 整体架构 目录 [源码解析] 模型并行分布式训练Megatron (2) --- 整体架构 0x00 摘要 0x01 启动 1.1 分布式启动 1.2 构造基础 1.2.1 获取模型 1.2.2 获取数据集 1.2.3 步进函数 1.2.3.1 广播数据 0x02 Pretrain 0x03 初始化 3.1 initialize_megatron 3.2 初始化分布式环境 3.3 初始化进程组全局变量 0x04 设置模型 4.1…
[源码解析] 模型并行分布式训练 Megatron (3) ---模型并行实现 目录 [源码解析] 模型并行分布式训练 Megatron (3) ---模型并行实现 0x00 摘要 0x01 并行Transformer层 1.1 初始化 1.2 前向传播 0x02 并行MLP 2.1 命名规范 2.2 MLP 代码 2.2.1 初始化 2.2.2 前向操作 0x03 ColumnParallelLinear 3.1 定义 3.2 初始化 3.2.1 切分size 3.2.2 初始化权重 3.3…
[源码解析] 模型并行分布式训练 Megatron (4) --- 如何设置各种并行 目录 [源码解析] 模型并行分布式训练 Megatron (4) --- 如何设置各种并行 0x00 摘要 0x01 前文回顾 0x02 初始化 2.1 全局变量 2.2 初始化代码 0x03 切分样例 3.1 注释 3.2 切分情况 3.3 切分策略 3.4 实验 0x04 起始状态 4.1 GPU 状况 4.2 符号说明 4.3 初始分组 0x05 Tensor model-parallel 5.1 分组…
[源码解析] 模型并行分布式训练Megatron (5) --Pipedream Flush 目录 [源码解析] 模型并行分布式训练Megatron (5) --Pipedream Flush 0x00 摘要 0x01 背景 0x02 论文 2.1 引论 2.2 背景 2.3 流水线权重问题 2.3.1 问题1 2.3.2 问题2 2.3.3 问题3 2.4 PipeDream-2BW 系统设计 2.4.1 GPipe 2.4.2 Double-Buffered Weight Updates (…
-------倒叙查看本文. 6,用auc对测试的结果进行评估: auc代码如下: #!/usr/bin/env python import sys def auc(labels,predicted_ctr): i_sorted = sorted(range(len(predicted_ctr)),key = lambda i : predicted_ctr[i],reverse = True) auc_temp = 0.0 tp = 0.0 tp_pre = 0.0 fp = 0.0 fp_p…
项目介绍 给定查询和用户信息后预测广告点击率 搜索广告是近年来互联网的主流营收来源之一.在搜索广告背后,一个关键技术就是点击率预测-----pCTR(predict the click-through rate),由于搜索广告背后的经济模型(economic model )需要pCTR的值来对广告排名及对点击定价.本次作业提供的训练实例源于腾讯搜索引擎的会话日志(sessions logs), soso.com,要求学员们精准预测测试实例中的广告点击率. 训练数据文件TRAINING DATA…
本文介绍CTR相关基础知识. 一.广告投放系统 广告系统包含多个子系统.除了上图所示的广告投放系统外,还包含商业系统(广告库的获得),统计系统(点击展示日志的获得)等. 广告投放系统主要是面向用户的,交互逻辑就是用户请求一个网页之后,会想检索系统请求广告,然后检索系统从广告库中获取一个广告列表,进行特征抽取之后进行点击率预估,排名靠前的展示给 用户.然后根据用户的点击情况获得展示点击日志,之后进行线          下的模型训练学习.之前的广告投放系统分为线上系统和线下模型训练系统,现在出现的…
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑…
1GBDT和LR融合      LR模型是线性的,处理能力有限,所以要想处理大规模问题,需要大量人力进行特征工程,组合相似的特征,例如user和Ad维度的特征进行组合.      GDBT天然适合做特征提取,因为GBDT由回归树组成所以, 每棵回归树就是天然的有区分性的特征及组合特征,然后给LR模型训练,提高点击率预估模型(腾讯).      例如,输入样本x,GBDT模型得到两颗树tree1和tree2,遍历两颗树,每个叶子节点都是LR模型的一个维度特征,在求和每个叶子*权重及时LR模型的分类…
周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine(下载链接:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.56…
1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑回归模型,这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的…
https://blog.csdn.net/john_xyz/article/details/78933253 目录目录CTR预估综述Factorization Machines(FM)算法原理代码实现Field-aware Factorization Machines(FFM)算法原理代码实现Deep FM算法原理代码实现参考文献CTR预估综述点击率(Click through rate)是点击特定链接的用户与查看页面,电子邮件或广告的总用户数量之比. 它通常用于衡量某个网站的在线广告活动是否…
1. 背景 CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间[2],映射后的函数值就是CTR的预估值.LR这种线性模型很容易并行化,处理上亿条训练样本不是问题,但线性模型学习能力有限,需要大量特征工程预先分析出有效的特征.特征组合,从而去间接增…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ embedding 2. Deep Neural Network(DNN) 3. Factorisation-machine supported Neural Networks (FNN) 4. Product-based Neural Network(PNN) 5. Wide & Deep Lear…