Bayesian在识别领域的贡献,着实吸引人 阅读笔记 Gabor特征 (简介,另单独详述) 通过上面的分析,我们知道了,一个Gabor核能获取到图像某个频率邻域的响应情况,这个响应结果可以看做是图像的一个特征. 那么,我们如果用多个不同频率的Gabor核去获取图像在不同频率邻域的响应情况,最后就能形成图像在各个频率段的特征,这个特征就可以描述图像的频率信息了.上图展示了一系列具有不同频率的 Gabor 核,用这些核与图像卷积,我们就能得到图像上每个点和其附近区域的频率分布情况. 由于纹理特征通…
目录 概 主要内容 Sampling 分类器 代码 Kang B., Xie S., Rohrbach M., Yan Z., Gordo A., Feng J. and Kalantidis Y. Decoupling representation and classifier for long-tailed recognition. In International Conference on Learning Representations (ICLR), 2014. 概 本文通过拆解特征…
本博客是基于对周志华教授所著的<机器学习>的"第7章 贝叶斯分类器"部分内容的学习笔记. 朴素贝叶斯分类器,顾名思义,是一种分类算法,且借助了贝叶斯定理.另外,它是一种生成模型(generative model),采用直接对联合概率P(x,c)建模,以获得目标概率值的方法. 目录 预备知识 先验概率与后验概率 贝叶斯定理(Bayesian Theorem) 朴素贝叶斯分类器 何为"朴素":属性条件独立性假设 分类准则 离散属性与连续属性值的分别处理 例子…
为何有必要进修统计机器学习? 因为你没有那么多的数据 因为未知的东西最终还是需理论所解释 基于规则?基于概率? ---- 图灵奖得主.贝叶斯之父 Judea Pearl 谈深度学习局限,想造自由意志机器人 从科学角度来说,基于规则的系统就是错误的.它们为专家建模,而不是对疾病本身建模. 问题在于,程序员创建的规则没有正确的组合.当添加更多新的规则时,你必须撤消旧的规则.它是一个非常脆弱的系统. 例如,如果医院出现程序上的变动,整个系统都必须得重写.而且我们这里谈的规则不是一两个,而是有数百个,包…
转自:http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html 1.1.摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义.然后,介绍贝叶斯分类算法的基础——贝叶斯定理.最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类. 1.2.分类问题综述 对于分类问题,其实谁都不会陌生…
朴素贝叶斯模型 1) X:一条未被标记的数据 2) H:一个假设,如H=X属于Ci类 根据贝叶斯公式 把X表示为(x1,x2,....xn) x1,x2,....xn表示X在各个特征上的值. 假设有c1,c2,c3...cm个类别. 那么这个对X的分类问题就可以转化为找出使P(ci|X)最大的类别ci作为分类结果 由于我们只需要找出P(ci|X)的相对最大值,那么即找出P(X|ci)P(ci)的最大值即可 N为整个训练集的个数 P(ci)=count(ci)/N 假设X的各个属性是相互独立的:…
数学似宇宙,韭菜只关心其中实用的部分. scikit-learn (sklearn) 官方文档中文版 scikit-learn Machine Learning in Python 一个新颖的online图书资源集,非常棒. 机器学习原理 Bayesian Machine Learning 9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process[ignore] 随机过程 [Scikit-learn] 1.1 Generalized Linear Mo…
向@yangliuy大牛学习NLP,这篇博客是数据挖掘-基于贝叶斯算法及KNN算法的newsgroup18828文本分类器的JAVA实现(上)的Python实现.入门为主,没有太多自己的东西. 1. 数据集 Newsgroup新闻文档集,含有20000篇左右的Usenet文档,平均分配在20个新闻组,即有20个文件夹.现在用的Newsgroup18828新闻文档集是经过处理的,即每篇文档只属于一个新闻组. 2. 预处理,对每篇文档进行文本处理,为后续构造字典.提取特征词做准备 # -*- cod…
贝叶斯学习方法中有用性非常高的一种为朴素贝叶斯学习期,常被称为朴素贝叶斯分类器. 在某些领域中与神经网络和决策树学习相当.尽管朴素贝叶斯分类器忽略单词间的依赖关系.即如果全部单词是条件独立的,但朴素贝叶斯分类在实际应用中有非常出色的表现. 朴素贝叶斯文本分类算法伪代码: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Cen…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizona, USA ICLR 2013 Workshop Track Accepted for Oral Presentation Zero-Shot Learning Through Cross-Modal Transfer Richard Socher, Milind Ganjoo, Hamsa Sr…
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer format than this) maintained by @karpathy NEW: This year I also embedded the (1,2-gram) tfidf vectors of all papers with t-sne and placed them in an interf…
[it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Objective-C to develop iPhone games http://it-ebooks.info/book/3544/Learning Web App Development || Build Quickly with Proven JavaScript Techniques http:…
Indexes and search engines These sites provide indexes and search engines for Go packages: godoc.org gowalker gosearch Sourcegraph Contributing To edit this page you must be a contributor to the go-wiki project. To get contributor access, send mail t…
Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, there's a good chance it's divided into a unit on supervised learning and a unit on unsupervised learning. We certainly care about this distinction f…
从决策树学习谈到贝叶斯分类算法.EM.HMM     引言 最近在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类 & 分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考.行文杂乱,但侥幸若能对读者起到一点帮助,则幸甚至哉. 本文借鉴和参考了两本书,…
文本挖掘的paper没找到统一的benchmark,只好自己跑程序,走过路过的前辈如果知道20newsgroups或者其它好用的公共数据集的分类(最好要所有类分类结果,全部或取部分特征无所谓)麻烦留言告知下现在的benchmark,万谢! 嗯,说正文.20newsgroups官网上给出了3个数据集,这里我们用最原始的20news-19997.tar.gz. 分为以下几个过程: 加载数据集 提feature 分类 Naive Bayes KNN SVM 聚类 说明: scipy官网上有参考,但是看…
文本挖掘的paper没找到统一的benchmark,只好自己跑程序,走过路过的前辈如果知道20newsgroups或者其它好用的公共数据集的分类(最好要所有类分类结果,全部或取部分特征无所谓)麻烦留言告知下现在的benchmark,万谢! 嗯,说正文.20newsgroups官网上给出了3个数据集,这里我们用最原始的20news-19997.tar.gz. 分为以下几个过程: 加载数据集 提feature 分类 Naive Bayes KNN SVM 聚类 说明: scipy官网上有参考,但是看…
从决策树学习谈到贝叶斯分类算法.EM.HMM                (Machine Learning & Recommend Search交流新群:172114338) 引言 log0为0). 如果写代码实现熵的计算,则例如以下所看到的: //依据详细属性和值来计算熵 double ComputeEntropy(vector <vector <string> > remain_state, string attribute, string value,bool i…
转http://www.open-open.com/lib/view/open1396063913278.html内容目录Astronomy构建工具缓存云计算命令行选项解析器命令行工具压缩配置文件解析器控制台用户界面加密数据处理数据结构数据库和存储开发工具分布式/网格计算文档编辑器Encodings and Character SetsGamesGISGo ImplementationsGraphics and AudioGUIs and Widget ToolkitsHardwareLangu…
内容目录 Astronomy 构建工具 缓存 云计算 命令行选项解析器 命令行工具 压缩 配置文件解析器 控制台用户界面 加密 数据处理 数据结构 数据库和存储 开发工具 分布式/网格计算 文档 编辑器 Encodings and Character Sets Games GIS Go Implementations Graphics and Audio GUIs and Widget Toolkits Hardware Language and Linguistics 日志 机器学习 Math…
51 Free Data Science Books A great collection of free data science books covering a wide range of topics from Data Science, Business Analytics, Data Mining and Big Data to Machine Learning, Algorithms and Data Science Tools. Data Science Overviews An…
原文:https://herbertmj.wikispaces.com/stacking%E7%AE%97%E6%B3%95 stacked 产生方法是一种截然不同的组合多个模型的方法,它讲的是组合学习器的概念,但是使用的相对于bagging和boosting较少,它不像bagging和boosting,而是组合不同的模型,具体的过程如下:1.划分训练数据集为两个不相交的集合.2. 在第一个集合上训练多个学习器.3. 在第二个集合上测试这几个学习器4. 把第三步得到的预测结果作为输入,把正确的回…
一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分类任务来说,在所有相关概率都已知的理想情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记结果. 二.贝叶斯决策论的基本原理 我们以多分类任务为例: 假设有N种可能的类别标记,即y={c1,c2,...,cN},λij是将一个真实类别为cj的样本误分类为ci的损失,基于后验概率P(…
From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am-8:40am Ballrooms A,B,C Rooms 302,304,306 Opening Remarks from Conference Chairs The opening remarks will be made from Ballrooms A,B,C, but a live vid…
http://blog.csdn.net/jj12345jj198999/article/details/8951120 coursera上 web intelligence and big data 终于布置了HW7,这一次的要求是对一系列DNA序列进行预测,具体说明如下: Data Analytics Assignment (for HW7) Predict the Ethnicity of Individuals from their Genes   ===================…
Shogun网站上的关于主流机器学习工具包的比较: http://www.shogun-toolbox.org/page/features/   created last updated main language main focus shogun 1999 10-2013 C++ General Purpose ML Package with particular focus on large scale learning; Kernel Methods; Interfaces to var…
Post Date: September 3, 2014By: Stephanie Miller Marty Rose, Data Scientist in the Acxiom Product and Engineering group, and an active member of the DMA Analytics Council shared the following list of data science books with the Council this week, and…
2 Numpy快速上手 2.1. 什么是Numpy Numpy是Python的一个科学计算的库 主要提供矩阵运算的功能,而矩阵运算在机器学习领域应用非常广泛 Numpy一般与Scipy.matplotlib一起使用. 虽然python中的list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数. 2.1.2 安装导入了Numpy (通用做法import numpy as np 简单输入) >>> import numpy as np >>> prin…
Machine Learning Trick of the Day (1): Replica Trick 'Tricks' of all sorts are used throughout machine learning, in both research and in production settings. These tricks allow us to address many different types of data analysis problems, being rough…