布隆算法(BloomFilter)】的更多相关文章

      BloomFilter算法,是一种大数据排重算法.在一个数据量很大的集合里,能准确断定一个对象不在集合里:判断一个对象有可能在集合里,而且占用的空间不大.它不适合那种要求准确率很高的情况,零错误的场景.通过牺牲部分准确率达到高效利用空间的目的.       场景一:假如有一个很大的表,通过字段key查询数据,操作很重:业务方请求时,传过来的key有很大一部分是不存在的:这种不存在的key请求就会浪费我们的查询资源.针对这种情况,我们可以引人BloomFilter算法,在请求key查询…
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合.使用场景:数据量为100亿.空间受限制的黑名单网页系统.垃圾邮件过滤系统.爬虫的网址判重系统等. 实例 为了说明Bloom Filter存在的重要意义,举一个实例: 假设要你写一个网络蜘蛛(web crawler).由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成"环". 为了避免形成"环"…
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下问题就是另外一种考虑方式了, 因此本文只描述贫穷落后一穷二白的场景,俨然有种60年代先辈们在戈壁攻克原子弹的感觉. 1.查找问题的一般思路 查找问题是出现频率极高的问题,来看一道面试题: 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件所有共同的U…
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包括持久化到本地磁盘或结合Redis进行持久化.本文主要介绍持久化到本地的操作. 关于BloomFilter的基本原理.jar包及入门Demo,请参考我的博客:布隆过滤器 数据持久化 import java.io.File; import java.io.FileNotFoundException;…
布隆过滤器( Bloom filters) 数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块.但是它的效用是有限的.HFile数据块的默认大小是64KB,这个大小不能调整太多. 如果你要查找一个短行,只在整个数据块的起始行键上建立索引无法给你细粒度的索引信息.例如,如果你的行占用100字节存储空间,一个64KB的数据块包含(64 * 1024)/100 = 655.53 = ~700行,而你只能把起始行放在索引位上.你要查找的行可能落在特定数据块上的行区间…
通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下问题就是另外一种考虑方式了,因此本文只描述贫穷落后一穷二白的场景,俨然有种60年代先辈们在戈壁攻克原子弹的感觉. 1.查找问题的一般思路 查找问题是出现频率极高的问题,来看一道面试题: 给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件所有共同的UR…
数据过滤在很多场景都会应用到,特别是在大数据环境下.在数据量很大的场景实现过滤或者全局去重,需要存储的数据量和计算代价是非常庞大的.很多小伙伴第一念头肯定会想到布隆过滤器,有一定的精度损失,但是存储性能和计算性能可以达到几何级别的提升.很多第三方框架也实现了相应的功能,比如hbase框架实现的布隆过滤器性能是非常的棒,redis也可以实现相应的功能.这些需要借助于第三方框架,需要维护第三方框架.如果公司没有部署相应架构,单独为使用布隆过滤器部署一套集群,代价还是非常大的. 我们在做流式计算时需要…
转载自:http://blog.csdn.net/opensure/article/details/46453681 1.主要功能 提高随机读的性能 2.存储开销 bloom filter的数据存在StoreFile的meta中,一旦写入无法更新,因为StoreFile是不可变的.Bloomfilter是一个列族(cf)级别的配置属性,如果你在表中设置了Bloomfilter,那么HBase会在生成StoreFile时包含一份bloomfilter结构的数据,称其为MetaBlock:MetaB…
通过Lua脚本批量插入数据到布隆过滤器 有关布隆过滤器的原理之前写过一篇博客: 算法(3)---布隆过滤器原理 在实际开发过程中经常会做的一步操作,就是判断当前的key是否存在. 那这篇博客主要分为三部分: 1.几种方式判断当前key是否存在的性能进行比较. 2.Redis实现布隆过滤器并批量插入数据,并判断当前key值是否存在. 3.针对以上做一个总结. 一.性能对比 主要对以下方法进行性能测试比较: 1.List的 contains 方法 2.Map的 containsKey 方法 3.Go…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/details/100065668 前面给大家讲了哈希表(散列)这种数据结构,那么使用哈希表来解决实际问题,那就是Hash算法了,我们一起来看看. 一.Hash算法的概念 Hash算法(Hash Algorithm),简称散列算法,也成哈希算法(英译),是将一个大文件映射成一个小串字符.与指纹一样,就是…