spark算子篇-repartition and coalesce】的更多相关文章

我们知道 RDD 是分区的,但有时候我们需要重新设置分区数量,增大还是减少需要结合实际场景,还有可以通过设置 RDD 分区数来指定生成的文件的数量 重新分区有两种方法:repartition and coalesce 先看源代码 def repartition(self, numPartitions): """ Return a new RDD that has exactly numPartitions partitions. Can increase or decreas…
一.基本介绍 rdd.aggregateByKey(3, seqFunc, combFunc) 其中第一个函数是初始值 3代表每次分完组之后的每个组的初始值. seqFunc代表combine的聚合逻辑 每一个mapTask的结果的聚合成为combine combFunc reduce端大聚合的逻辑 ps:aggregateByKey默认分组 二.代码 from pyspark import SparkConf,SparkContext from __builtin__ import str c…
一.概念 rdd.combineByKey(lambda x:"%d_" %x, lambda a,b:"%s@%s" %(a,b), lambda a,b:"%s$%s" %(a,b))三个参数(都是函数)第一个参数:给定一个初始值,用函数生成初始值.第二个参数:combinbe聚合逻辑.第三个参数:reduce端聚合逻辑. 二.代码 from pyspark.conf import SparkConf from pyspark.context…
aggregate aggregate 是比较常用的 行动 操作,不是很好懂,这里做个解释. aggregate(zeroValue, seqOp, combOp) zeroValue 是一个初始值,自己根据实际情况进行设定: 首先我们知道 RDD 是被分区,然后并行操作的: seqOp 是对每个分区进行聚合,每个分区聚合结果作为 combOp 的输入: combOp 对分区聚合结果再次进行聚合: seqOp 和 combOp 必须有且仅有2个参数 示例如下 seqOp: 把初始值设为 0,累加…
1. Spark执行流程 知识补充:RDD的依赖关系 RDD的依赖关系分为两类:窄依赖(Narrow Dependency)和宽依赖(Shuffle Dependency) (1)窄依赖 窄依赖指的是父RDD中的一个分区最多只会被子RDD中的一个分区使用,意味着父RDD的一个分区内的数据是不能被分割的,子RDD的任务可以跟父RDD在同一个Executor一起执行,不需要经过Shuffle阶段去重组数据 窄依赖关系划分为两种:一对一依赖(OneToOneDependency)和范围依赖(Range…
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对RDD的repartition.coalesce进行对比. RDD重新分区的手段与DataFrame类似,有repartition.coalesce两个方法 repartition def repartition(numPartitions: Int): JavaRDD[T] /** * Return…
在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的).在SparkSQL中,对数据重新分区主要有两个方法 repartition 和 coalesce ,下面将对两个方法比较 repartition repartition 有三个重载的函数: def repartition(numPartitions: Int): DataFrame  /** * Returns…
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操作 Spark算子:RDD基本转换操作(2)–coalesce.repartition Spark算子:RDD基本转换操作(3)–randomSplit.glom Spark算子:RDD基本转换操作(4)–union.intersection.subtract Spark算子:RDD基本转换操作(5…
package com.dingxin.datainit import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.SparkSession /** * Created by zhen on 2018/12/18. */ object RDDTransform { def main(args: Array[String]) { Logger.getLogger("org.apache.spark").setL…
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 action操作实例 三.spark算子详解 3.1弹性分布式数据集 (RDD) 3.2Spark 算子大致可以分为以下两类 3.2.1Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理 3.2.2Action 行动算子:这类算子会触发 SparkContext…