seq2seq和Transformer】的更多相关文章

简单而言,seq2seq由两个RNN组成,一个是编码器(encoder),一个是解码器(decoder).以MT为例,将源语言"我爱中国"译为"I love China",则定义序列: \[ X=(x_0,x_1,x_2,x_3)\\ 其中,x_0="我",x_1="爱",x_2="中",x_3="国" \] 另外目标序列: \[ Y=(y_0,y_1,y_2)="I\ lov…
目录 前言 BERT模型概览 Seq2Seq Attention Transformer encoder部分 Decoder部分 BERT Embedding 预训练 文本分类试验 参考文献 前言 在18年末时,NLP各大公众号.新闻媒体都被BERT(<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding>)刷屏了,刷新了自然语言处理11项纪录,也被称为了2018年最强自然语言处理模型.…
自然语言处理是一门用于理解人类语言.情感和思想的技术,被称为是人工智能皇冠上的明珠. 随着深度学习发展,自然语言处理技术近年来发展迅速,在技术上表现为BERT.GPT等表现极佳的模型:在应用中表现为chatbot.知识图谱.舆情监控等基于NLP技术的产品在市场上的大规模出现. 基于此,各类公司开始出现NLP算法工程师的需求,待遇在软件工程师岗位中处于相当上游的水平. 基于此,不少同学和工程师有学习NLP的愿望,本文对首先NLP做一个简单的介绍:然后,作为一个过来人,为初学NLP的同学提供一些必要…
摘要:在此解决方案中把表格识别分成了四个部分:表格结构序列识别.文字检测.文字识别.单元格和文字框对齐.其中表格结构序列识别用到的模型是基于Master修改的,文字检测模型用到的是PSENet,文字识别用到的是Master模型. 本文分享自华为云社区<论文解读二十八:表格识别模型TableMaster>,作者: cver. 1. 概述 在表格识别中,模型一般先回归出单元格的坐标,然后再根据单元格的坐标得到表格的行列信息.对于有表格线的场景,模型可以比较准确地获取单元格坐标,进而可以利用单元格坐…
Bert通过双向LM处理语言理解问题,GPT则通过单向LM解决生成问题,那如果既想拥有BERT的双向理解能力,又想做生成嘞?成年人才不要做选择!这类需求,主要包括seq2seq中生成对输入有强依赖的场景,例如翻译,生成式问答,文本摘要等等 最初Transformer的Encoder+Deocder结构是在机器翻译领域,Encoder的部分通过双向LM来抽取输入的全部上下文信息,Decoder通过单向LM在Encoder抽取信息的基础上完成生成任务.但后续的预训练模型,Bert和GPT各自选取了T…
目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled dot-product attention \ multi-head attention) 3. self-attention (1)self-attention的计算 (2) self-attention如何并行 (3) self-attention的计算总结 (4) self-attention的类型(multi-…
一,概述 在自然语言生成的任务中,大部分是基于seq2seq模型实现的(除此之外,还有语言模型,GAN等也能做文本生成),例如生成式对话,机器翻译,文本摘要等等,seq2seq模型是由encoder,decoder两部分组成的,其标准结构如下: 原则上encoder,decoder可以由CNN,RNN,Transformer三种结构中的任意一种组合.但实际的应用过程中,encoder,decnoder的结构选择基本是一样的(即encoder选择CNN,decoder也选择CNN,如faceboo…
前言 Transfomer是一种encoder-decoder模型,在机器翻译领域主要就是通过encoder-decoder即seq2seq,将源语言(x1, x2 ... xn) 通过编码,再解码的方式映射成(y1, y2 ... ym), 之前的做法是用RNN进行encode-decoder,但是由于RNN在某一时间刻的输入是依赖于上一时间刻的输出,所以RNN不能并行处理,导致效率低效,而Transfomer就避开了RNN,因此encoder-decoder效率高. Transformer…
目录 NLP中的预训练 语境表示 语境表示相关研究 存在的问题 BERT的解决方案 任务一:Masked LM 任务二:预测下一句 BERT 输入表示 模型结构--Transformer编码器 Transformer vs. LSTM 模型细节 在不同任务上进行微调 GLUE SQuAD 1.1 SQuAD 2.0 SWAG 分析 预训练的影响 方向与训练时间的影响 模型规模的影响 遮罩策略的影响 多语言BERT(机器翻译) 生成训练数据(机器阅读理解) 常见问题 结论 翻译自Jacob Dev…
目录 从宏观上看Transformer 把张量画出来 开始编码! 从宏观上看自注意力 自注意力的细节 自注意力的矩阵计算 "多头"自注意力 用位置编码表示序列的顺序 残差 解码器 最后的线性和Softmax层 损失函数 下一步 本文翻译自Jay Alammar的博文The Illustrated Transformer 注意力是一个有助于提高神经机器翻译模型性能的机制.在这篇文章中,我们将着眼于Transformer--一个利用注意力来提高模型训练速度的模型.Transformer在特…