Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1] + F[n-2], where F[1] = 1 and F[2] = 1. It turns out that F541, which contains 113 digits, is the first Fibonacci number for which the last nine digi…
Product-sum numbers A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1, a2, … , ak} is called a product-sum number: N = a1 + a2 + … + ak = a1 × a2 × … × ak. For example, 6 = 1 + 2 + 3 =…
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable numbers Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b…
题目链接: https://projecteuler.net/problem=435 题意: The Fibonacci numbers $ {f_n, n ≥ 0}$ are defined recursively as \(f_n = f_{n-1} + f_{n-2}\) with base cases \(f_0 = 0\) and \(f_1 = 1\). Define the polynomials $ {F_n, n ≥ 0} $ as $F_n(x) =\sum_{i=0}^{n…
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentagonal number, I can only wonder if we have to deal with septagonal numbers in Problem 46. Anyway the problem reads Pentagonal numbers are generated by t…
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出这道题的人) program 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.…