Project Euler 2 Even Fibonacci numbers】的更多相关文章

题意:斐波那契数列中的每一项都是前两项的和.由1和2开始生成的斐波那契数列前10项为:1, 2, 3, 5, 8, 13, 21, 34, 55, 89, -考虑该斐波那契数列中不超过四百万的项,求其中为偶数的项之和. /************************************************************************* > File Name: euler002.c > Author: WArobot > Blog: http://www.…
Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1] + F[n-2], where F[1] = 1 and F[2] = 1. It turns out that F541, which contains 113 digits, is the first Fibonacci number for which the last nine digi…
Product-sum numbers A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1, a2, … , ak} is called a product-sum number: N = a1 + a2 + … + ak = a1 × a2 × … × ak. For example, 6 = 1 + 2 + 3 =…
题意:三角形数序列的第n项由公式tn = 1/2n(n+1)给出:因此前十个三角形数是: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, - 将一个单词的每个字母分别转化为其在字母表中的顺序并相加,我们可以计算出一个单词的值.求在words.txt中有多少个三角形单词? euler042.c /************************************************************************* > File Name: eu…
题意:在无限硬币的情况下能组成200的方案数有多少个 思路:DP,设数组 dp[ n ] [ k ] 代表前 n 种硬币能够组成 k 元的方案数,那么就能得到 dp [ n ] [ k ] = dp [ n - 1 ] [ k ] + dp [ n ] [ k - money[ n ] ] ,可以看出当前方案数是全部来源于之前的方案数的,那么可以用滚动数组进行降维,得到状态转移方程 dp [ j ] = dp [ j ]( 因为滚动数值仍然保留上一次的值,所以这个 dp [ j ] 相当于 dp…
题意:在斐波那契数列( 1 ,1,2,3,5 ...... )中,第一个有1000位数字的是第几项? 思路:滚动数组 + 大数加法 /************************************************************************* > File Name: euler025.c > Author: WArobot > Blog: http://www.cnblogs.com/WArobot/ > Created Time: 2017…
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable numbers Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b…
题目链接: https://projecteuler.net/problem=435 题意: The Fibonacci numbers $ {f_n, n ≥ 0}$ are defined recursively as \(f_n = f_{n-1} + f_{n-2}\) with base cases \(f_0 = 0\) and \(f_1 = 1\). Define the polynomials $ {F_n, n ≥ 0} $ as $F_n(x) =\sum_{i=0}^{n…
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentagonal number, I can only wonder if we have to deal with septagonal numbers in Problem 46. Anyway the problem reads Pentagonal numbers are generated by t…
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出这道题的人) program 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.…