首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
BZOJ4423 Bytehattan
】的更多相关文章
BZOJ4423 Bytehattan
Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的. 有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一行包含两个正整数n,k(2<=n<=1500,1<=k<=2n(n-1)),表示网格图的大小以及操作的个数. 接下来k行,每行包含两条信息,每条信息包含两个正整数a,b(1<=a,b<=n)以及一个字符c(c=N或者E). 如果c=N,表示删除(a,b)到(a,b+1)这…
【BZOJ4423】[AMPPZ2013]Bytehattan 对偶图+并查集
[BZOJ4423][AMPPZ2013]Bytehattan Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一行包含两个正整数n,k(2<=n<=1500,1<=k<=2n(n-1)),表示网格图的大小以及操作的个数.接下来k行,每行包含两条信息,每条信息包含两个正整数a,b(1<=a,b<=n)以及一个字符c(c=N…
【bzoj4423】 AMPPZ2013—Bytehattan
http://www.lydsy.com/JudgeOnline/problem.php?id=4423 (题目链接) 题意 给出一个N*N的格点图,m次操作,每次切断U,V之间的边,问切断之后,U,V是否还连通. Solution 看到这个题目我就想起了以前写过的一道线段树维护连通性的题.嗯数据范围百万,3秒,nlogn的应该跑得过.那么,二维线段树? 不不不,我是来做平面图的,想想对偶图有没有什么好的性质.考虑每次砍掉平面图一条边就是使对偶图中的两个区域合成了一个区域,就相当于给对偶图中的两…
【BZOJ-4423】Bytehattan 并查集 + 平面图转对偶图
4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 144 Solved: 103[Submit][Status][Discuss] Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一行包含两个正整数n,k(2<=n<=1500,1<=k&l…
[BZOJ4423][AMPPZ2013]Bytehattan(对偶图+并查集)
建出对偶图,删除一条边时将两边的格子连边.一条边两端连通当且仅当两边的格子不连通,直接并查集处理即可. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l); i<=(r); i++) using namespace std; ; ]; int n,Q,ans,a,b,x,y,fa[N*N]; int find(int x){ return fa[x]==x ? x : fa[x]=fin…
【bzoj4423】[AMPPZ2013]Bytehattan(平面图转对偶图+并查集)
题目传送门:bzoj4423 如果是普通的删边判连通性,我们可以很显然的想到把操作离线下来,倒着加边.然而,这题强 制 在 线. 虽然如此,但是题目所给的图是个平面图.那么我们把它转成对偶图试试看? 在对偶图上,删边变成了加边(把边两边的网格连通起来).并且,我们可以发现,如果在对偶图上加边时发现出现了一个环,那么就说明这个环中间的格点被完全同外面的格点切断了联系(包括刚才删去的边两侧的点). 于是我们就只需在对偶图上用并查集维护对偶图的连通性即可. 代码: #include<cstdio>…
BZOJ4423 [AMPPZ2013]Bytehattan
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一行包含两个正整数n,k(2<=n<=1500,1<…
BZOJ4423 AMPPZ2013Bytehattan(并查集)
判断网格图中某两点是否被割开,可以将割边视为边区域视为点,转化为可切割这两点的区域是否连通.于是每次判断使两个区域连通后是否会形成环(边界视为连通),若是则说明被两点被割开.并查集维护. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace s…
BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图
4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec Memory Limit: 128 MB Submit: 277 Solved: 183 [Submit][Status][Discuss] Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的. 有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一行包含两个正整数n,k(2<=n<=1500,1<=…
BZOJ 4423 【AMPPZ2013】 Bytehattan
Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的. 有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一行包含两个正整数n,k(2<=n<=1500,1<=k<=2n(n-1)),表示网格图的大小以及操作的个数. 接下来k行,每行包含两条信息,每条信息包含两个正整数a,b(1<=a,b<=n)以及一个字符c(c=N或者E). 如果c=N,表示删除(a,b)到(a,b+1)这…