1.线性SVM 首先,回顾一下SVM问题的定义,如下: 线性约束很烦,不方便优化,是否有一种方法可以将线性约束放到优化问题本身,这样就可以无拘无束的优化,而不用考虑线性约束了.其对应的拉格朗日对偶形式为: 最终的优化结果保证离超平面远的点的权重为0. 经过上面的对偶变化,下面来一步一步的简化我们的原始问题, 首先对b求偏导数,并且为0: 对w求偏导数: 也就是 化简原型 将w带入,并且去掉min,得到如下 执行到这里,现在目标函数只与有关,形式满足QP,可以轻易得到,也就是得到w.但是在计算过程…