Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\)为我们枚举的生成树的边集. \[ Ans=\sum_{E}(\sum_{i\in E}w_i)^k\\ =\sum_E \prod_{i\in E} \binom{k}{a_i}w_i^{a_i}[\sum_{i\in E}a_i=k]\\ =\sum_E \frac{1}{k!} \prod_{i…
P5296 [北京省选集训2019]生成树计数 题意 求一个带权无向图所有生成树边权和的 \(k\) 次方的和. 思路 首先有一个结论:\(a^i\) 的 EGF 卷 \(b^i\) 的 EGF 等于 \((a+b)^i\) 的 EGF.即: \[F(a)=\sum_{i=0}\frac{a^ix^i}{i!}\\ F(a+b)=F(a)*F(b) \] 证明如下: \[(a+b)^k=\sum_{i=0}^k{k\choose i}a^ib^{k-i}=\sum_{i=0}^k\frac{k!…
题面传送门 神题. 考虑将所有连通块缩成一个点,那么所有连好边的生成树在缩点之后一定是一个 \(n\) 个点的生成树.我们记 \(d_i\) 为第 \(i\) 个连通块缩完点之后的度数 \(-1\),那么共有 \(\prod\limits_{i=1}^na_i^{d_i+1}\times\dfrac{(n-2)!}{\prod\limits_{i=1}^nd_i!}\) 个这样的生成树,稍微解释一下这个柿子,因为每个连通块的每条边都有可能是由其中 \(a_i\) 个点中任意一点连出的,因此每个连…
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\) 个点. 现在我们需要再连接 \(n-1\) 条边,使该图变成一棵树.对一种连边方案,设原图中第 \(i\) 个连通块连出了 \(d_i\) 条边,那么这棵树 \(T\) 的价值为: \[ \mathrm{val}(T) = \left(\prod_{i=1}^{n} {d_i}^m\right)…
雅礼集训2019 D7T2 Subsequence 直接贴题解: 平衡树代码: #include<bits/stdc++.h> #define ll long long #define N 100005 using namespace std; inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&a…
自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le B\)),那么对答案的贡献就是 \[ {B-x-y+n-1\choose n-1} \] 根据范德蒙德恒等式 \[ {a+b\choose n} =\sum_{i=0}^n {a\choose i}{b\choose n-i} \] 所以上面可以拆开成 \[ \sum_{i=0}^{n-1} {C…
一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cnblogs.com/zj75211/p/8039443.html (Matrix-Tree定理) https://blog.csdn.net/u011815404/article/details/99679527(无向图生成树/MST计数) https://www.cnblogs.com/yangs…
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1766  Solved: 946[Submit][Status] Description  给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Input 3 Sample Output 16 HINT   Source 分析:从图中可以很容易看出,答…
题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[v][u]=-1 矩阵对角线为点的度数 2.求n-1阶主子式 的行列式的绝对值 去掉第一行第一列 初等变换消成上三角矩阵 对角线乘积为行列式 #include <bits/stdc++.h> using namespace std; const double eps = 1e-8; const i…
BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include <cstdio> #include <cstring> #include <algorithm> #define N 101 #define eps (1e-8) #define mem(x,v) memset(x,v,sizeof(x)) typedef long lon…