[Python数据挖掘课程]一.安装Python及爬虫入门介绍[Python数据挖掘课程]二.Kmeans聚类数据分析及Anaconda介绍[Python数据挖掘课程]三.Kmeans聚类代码实现.作业及优化[Python数据挖掘课程]四.决策树DTC数据分析及鸢尾数据集分析[Python数据挖掘课程]五.线性回归知识及预测糖尿病实例[Python数据挖掘课程]六.Numpy.Pandas和Matplotlib包基础知识[Python数据挖掘课程]七.PCA降维操作及subplot子图绘制[Py…
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处理,另一方面在进行特征工程时可以给我们一些思路.所以这样一个过程在数据挖掘中还是蛮有用的,相信大家在网上看过不少数据挖掘比赛的Kernel,一般一上来都先是个数据探索的过程.之前听过一个老师讲课,说数据探索过程其实可有可无,直接预处理猛搞,但典型的口嫌体正直,在演示一个比赛的流程时,还是先进行了汇总…
目录 数据质量分析   当我们得到数据后,接下来就是要考虑样本数据集的数据和质量是否满足建模的要求?是否出现不想要的数据?能不能直接看出一些规律或趋势?每个因素之间的关系是什么?   通过检验数据集的数据质量,绘制图表,计算某些特征值等手段,对样本数据集的结构和规律进行分析的过程就是数据探索.数据质量检测对后面的数据预处理有很大参考作用,并有助于选择合适的建模方法.   数据探索大致分为 质量探索 和 特征探索 两方面. 数据质量分析    定义:数据质量分析是数据预处理的前提,也是对数据挖掘的…
最近一直断断续续的做这个泰坦尼克生存预测模型的练习,这个kaggle的竞赛题,网上有很多人都分享过,而且都很成熟,也有些写的非常详细,我主要是在牛人们的基础上,按照数据挖掘流程梳理思路,然后通过练习每一步来熟悉应用python进行数据挖掘的方式. 数据挖掘的一般过程是:数据预览——>数据预处理(缺失值.离散值等)——>变量转换(构造新的衍生变量)——>数据探索(提取特征)——>训练——>调优——>验证 1 数据预览 1.1 head() 预览数据集的前面几条数据可以大致…
Python数据挖掘——数据预处理 数据预处理 数据质量 准确性.完整性.一致性.时效性.可信性.可解释性 数据预处理的主要任务 数据清理 数据集成 数据归约 维归约 数值归约 数据变换 规范化 数据离散化 概念分层产生 数据清理(试图填充缺失的值,光滑噪声并识别离群点,纠正数据的不一致) 缺失值 忽略元组 人工填写缺失值 使用一个全局常量填充缺失值 使用属性的中心度量(均值/中位数)填充缺失值 使用与给定元组属于同一类的所有样本的均值/中位数 使用最可能的值 填充缺失值 注:某些情况,缺失值并…
Python数据挖掘——数据概述 数据集由数据对象组成: 数据的基本统计描述 中心趋势度量 均值 中位数 众数 中列数 数据集的最大值和最小值的平均 度量数据分布 极差 最大值与最小值的差 四分位数 方差 四分位数极差 数据基本统计描述的图形显示 一元分布 分位数图 分位数-分位数图(q-q图) 直方图 二元分布 散点图 数据可视化 1.基于像素的可视化技术 2.几何投影可视化技术 3.基于图符的可视化技术 4.层次可视化技术 度量数据的相似性和相异性 相似 和相异 都称 邻近性 如果不相似,则…
# 背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plotly.seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发难度降低了很多. 前阵子看到这个库可以较为便捷的实现数据探索,今天得空打算学习一下.原本访问的是英文文档,结果发现已经有人在做汉化,虽然看起来也像是谷歌翻译的,本着拿来主义,少费点精力的精神,就半抄半学,还…
数据质量分析 脏数据包括:缺失值:异常值:不一致的值:重复数据及含有特殊符号的数据: 1.缺失值处理 统计缺失率,缺失数 2.异常值处理 (1)简单统计量分析 (2)3Q原则 正态分布情况下,小概率事件为异常值 不服从正太分布的,可以用原离平均值多少倍标准差来分析 (3)箱线图分析 使用describe()描述 主要数据探索函数 1.Pandas常用函数总结 导入数据 导出数据 查看.检查数据 数据选取 数据清理 dataframe处理NAN值 data_3=data_3.where(data_…
打算从后往前来做笔记 第九章 数据聚合与分组运算 分组 #生成数据,五行四列 df = pd.DataFrame({'key1':['a','a','b','b','a'], 'key2':['one','two','one','two','one'], 'data1':np.random.randn(5), 'data2':np.random.randn(5)}) df #可以按照key1分组计算data1的平均值 df.loc[:,'data1'].groupby(df.loc[:,'key…
背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plotly.seaborn,最终定格在了Bokeh,因为它可以与Flask完美的结合,数据看板的开发难度降低了很多. 前阵子看到这个库可以较为便捷的实现数据探索,今天得空打算学习一下.原本访问的是英文文档,结果发现已经有人在做汉化,虽然看起来也像是谷歌翻译的,本着拿来主义,少费点精力的精神,就半抄半学,还是发…