壹 早在2000年代中期,H-Store第一次在M.I.T.被我们提出来,VoltDB是H-Store的商业化产品,它表示结构相似的数据会被连续存放到一起.在本文的后续描述中,我们将使用V-H来缩写. V-H的设计(始于2004年)强调了在每秒可观的低延迟(以毫秒为单位)的情况下,以每秒大规模事务(TPS)的方式实现最大性能. 这样做的理由是,随着更快的辅助存储(例如SSD和NVRAM)的出现,基于磁盘的DBMS的性能将会提高. 综上,必须设计基于RAM的DBMS,这样相对于传统的DBMS系统而…
用手机接收邮件或者访问网页的时候,一般会说有「packet费用」(这是日本的说法,在中国好像一般都说 “流量费”),即使对网络不太熟悉的人也知道「packet」这个词(这里也是日本的情况). 那么,「packet」到底是什么呢? 「packet」本义是「小包裹」的意思.在网络通信中,指的是 在传输时被分割的数据. 大的数据在传输时,被分割为多个小数据,这样数据在传输过程中就不会独占整个网络. 实际中,多个网络通信同时进行时,不会出现1个通信占用整个网络的情况,而是多个网络通信都在同时进行的. 而…
嫌长不看版 本文介绍了通过复制和导出两个操作,将 Azure SQL 数据库中的内容转移至其他位置(例如本地环境)的具体做法.借此可以帮助用户在 Azure 中运行数据库的同时,在本地或指定的其他位置额外保留一个副本,满足制度或业务等各方面的要求. 操作细节版 很多用户向小编提出了这样一个问题:已经在使用 Azure SQL 数据库服务,虽然该服务有非常完善的数据备份和灾备机制,但出于公司制度或其他方面的要求,需要定期将数据库的完整内容下载到本地保存,哪怕手工操作也可以. 这当然是可以的,不过首…
大家一谈数据库,就觉得非常高深莫测,深不见底,非凡人敢去触摸.但Excel的话,没人敢说自己不会使用吧(相反一大堆人的简历上写着精通OFFICE所有软件套件).换作其他非微软厂商的数据库,的确很容易产生这样的畏惧感,包括笔者在内,对其他数据库也是不敢靠近.但Sqlserver,出自微软之手,可以让你大为改观,请看下文一一述说. 相关阅读 「Sqlserver」数据分析师有理由爱Sqlserver之一-好用的插件工具推荐 - 简书 https://www.jianshu.com/p/637aba4…
在前面系列文章的讲述下,部分读者有兴趣进入Sqlserver的世界的话,笔者不太可能在自媒体的载体上给予全方位的带领,最合适的方式是通过系统的书籍来学习,此篇给大家梳理下笔者曾经看过的自觉不错值得推荐的Sqlserver书单,希望能够给后来者带来一些指引和少走一些弯路. 最好的时代亦是最坏的时代 当下的自媒体时代,信息量非常丰富,连笔者这样的没有严密逻辑性的人,亦有机会通过自媒体的平台来展现一翻.在自媒体上时效性也是非常好,想写就写,读者群也可以不断地追更. 但一股知识付费的妖风也横刮过来,现在…
前面我们以相同的方式从数据分析师的视角介绍了Sqlserver,本系列亦同样地延续下去,同样是挖掘数据分析师值得使用的Azure云平台的功能.因云平台功能太多,笔者所接触的面也十分有限,有更专业的读者欢迎补充. 对云服务的一点点小认识 笔者接触Azure云时间不长,因没有IT背景,故对各大云市场也只能是浅尝即止,有关注Excel催化剂插件的读者们,也应该对笔者使用其他云市场有一些的了解. Excel催化剂的自动更新机制是放到阿里云上完成的,对应的云服务是构建云服务器(比虚拟主机要高级,可以完全自…
有天上飞的概念,就要有落地的实现 概念十遍不如代码一遍,朋友,希望你把文中所有的代码案例都敲一遍 先赞后看,养成习惯 SpringBoot 图文教程系列文章目录 SpringBoot图文教程1「概念+案例 思维导图」「基础篇上」 SpringBoot图文教程2-日志的使用「logback」「log4j」 SpringBoot图文教程3-「'初恋'情结」集成Jsp SpringBoot图文教程4-SpringBoot 实现文件上传下载 SpringBoot图文教程5-SpringBoot 中使用A…
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 不论新老朋友 我相信您都可以 从中获益.如果觉得 「不错」 的朋友,欢迎 「关注 + 留言 + 分享」,文末有完整的获取链接,您的支持是我前进的最大的动力! Part 1. 机器指令 上一次 我们已经了解了 二进制和 CPU 的基本原理,知道了程序运行时,CPU 每秒数以亿次.十亿次.百亿次地震荡着…
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Linesh 的博客:「译」JUnit 5 系列:扩展模型(Extension Model) 我的 Github:http://github.com/linesh-simplicity 概述 环境搭建 基础入门 架构体系 扩展模型(Extension Model) 条件断言 注入 动态测试 ... (如果…
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPerson(name, age, job) { var o = new Object(); o.name = name; o.age = age; o.job = job; o.sayName = function() { alert(this.age); }; return o; } var perso…
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSONP. 现在你想要获取其他网站上的 JavaScript 脚本,你非常高兴的使用 XMLHttpRequest 对象来获取.但是浏览器一点儿也不配合你,无情的弹出了下面的错误信息: XMLHttpRequest cannot load http://x.com/main.dat. No 'Access…
写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉:既可让人明白「为何如此设计」,即「知其然更知其所以然」:也能剥离一些琐碎的细节,让更多没那么多时间与精力.或者背景知识不足的朋友,对核心方法和思路,多一点理解,即,给人提供一种「纲举目张提纲挈领抽丝剥茧」的可能性. 机缘巧合,俺今天就决定抛砖引玉,写一篇不那么好的工程文档.也期望对本文话题感兴趣的朋…
简介参考 TokuMX 和 MongoDB 各自的官方站点.       ##  Tokutek 最重要的特点和 marketing word 是所谓 fractal tree indexing technology,相关链接: 1. 由于 per-node buffer 的引入所导致的 ACID 里的 Durability 问题应对方式(通过更合理的规划物理机器布局.增加单事务数据量等方式来分摊 fsync 开销:更「松弛」的持久化处理,即不要求每次 operation 都做持久化.而是「延迟…
原文:JavaScript quirk 1: implicit conversion of values 译文:「译」JavaScript 的怪癖 1:隐式类型转换 译者:justjavac 零:提要 [此贴子是 javascript 的 12 个怪癖(quirks) 系列的第一篇.] JavaScript 是非常宽容的,「来者不拒」,不在乎什么类型. 例如,它如果想要接受数字,它并不拒绝其他类型的值,而是试图把它们转换成数字: > '5' - '2' 3 > '5' * '2' 10 自动转…
Cloud Insight 此前已然支持 Linux 操作系统,支持20多中数据库中间件等组件,多种操作,多种搭配,服务器监控玩的其乐无穷啊!但想想还有许多 Windows 的小伙伴没有体验过,所以在程序员哥哥的努力加班加点的赶工下,我们隆重推出了监控 Windows 系统的功能. 安装方法 在 OneAPM Ci 官网注册,登录,进入 Ci 首页 选择合适的版本(32/64),下载探针,点击安装 或者下载探针,在 cmd.exe 里面执行命令行进行安装 是不是简单的让人无法相信,只要这样简单的…
本文由CrowHawk翻译,是Java GC调优的经典佳作. 本文翻译自Sangmin Lee发表在Cubrid上的"Become a Java GC Expert"系列文章的第三篇<How to Tune Java Garbage Collection>,本文的作者是韩国人,写在JDK 1.8发布之前,虽然有些地方有些许过时,但整体内容还是非常有价值的.译者此前也看到有人翻译了本文,发现其中有许多错漏生硬和语焉不详之处,因此决定自己翻译一份,供大家分享. 本文是"…
关于项目 项目地址 预览地址 记录最近做的一个 demo,前端使用 React,用 React Router 实现前端路由,Koa 2 搭建 API Server, 最后通过 Nginx 做请求转发. 文章列表 第一篇:React + Node 单页应用「一」前端搭建 React + Node 单页应用「二」OAuth 2.0 授权认证 & GitHub 授权实践 这是第二篇,介绍下 OAuth 2.0 授权机制,以及 Github App 授权过程,通过获取授权使用 Github API. O…
原文地址https://segmentfault.com/a/1190000003642057 超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSONP. 现在你想要获取其他网站上的 JavaScript 脚本,你非常高兴的使用 XMLHttpRequest 对象来获取.但是浏览器一点儿也不配合你,无情的弹出了下面的错误信息: XMLHttpReque…
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去. 现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢? 输入格式 第一行一个正整数 \(n\),表示玻璃层数.…
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的神器,试图借助神器的神秘 力量帮助她们战胜地灾军团. 在付出了惨痛的代价后,精灵们从步步凶险的远古战场取回了一件保存尚完好的神杖.但在经历过那场所有史书都视为禁忌的"诸神黄昏之战"后,神杖上镶嵌的奥术宝石 已经残缺,神力也几乎消耗殆尽.精灵高层在至高会议中决定以举国之力收集残存至今的奥术宝…
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. 输入格式 第一行三个正整数 \(n,Q,x\). 接下来 \(…
「NOI2013」小 Q 的修炼 第一次完整的做出一个提答,花了半个晚上+一个上午+半个下午 总体来说太慢了 对于此题,我认为的难点是观察数据并猜测性质和读入操作 我隔一会就思考这个sb字符串读起来怎么这么麻烦啊 首先可以发现,这个所有的选择都之后往后走,就是个topo图 task1,2,3 观察到数据有形如 s x x+11 v 3 + c y v 4 + c y v 5 + c y v 6 + c y v 7 + c y v 8 + c y v 9 + c y v 10 + c y v 11…
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连续子序列的异或和等于 \(k\).数据范围均在 \([0,1e5]\). 本题不强制在线,故莫队. 记序列 \(a\) 的前缀异或和 \(pre\),用一个桶 \(t_i\) 记录当前查询区间内前缀异或和为 \(i\) 的数量. 代码如下: #include <cstdio> #include &…
从 13 年专科毕业开始,一路跌跌撞撞走了很多弯路,做过餐厅服务员,进过工厂干过流水线,做过客服,干过电话销售可以说经历相当的“丰富”. 最后的机缘巧合下,走上了前端开发之路,作为一个非计算机专业且低学历的人来说,自学编程其实不是件容易的事情,不过庆幸的是自己坚持下来了. 目前工作还算不错,收入在目前所在的城市不算高,不算低,生活也还过得去,继续加油努力,也希望自己在今后更上一层. 从 16 年下半年开始,我真正接触前端,到现在 2 年多的时间.开始之初,我没有任何的语言基础,完全从零的小白开始…
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\).第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值.需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响.为…
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开始凸多边形中有 \(n\) 条线段,即多边形的 \(n\) 条边.这里我们用一个有序数对 \((a, b)\)(其中 \(a < b\))来表示一条端点分别为顶点 \(a, b\) 的线段. 在游戏开始之前,小 W 会进行一些操作.每次操作时,他会选中多边形的两个互异顶点,给它们之间连一条线段,并且…
题意 给你一颗 \(n\) 个点的树,每个点的度数不超过 \(20\) ,有 \(q\) 次修改点权的操作. 需要动态维护带权重心,也就是找到一个点 \(v\) 使得 \(\displaystyle \sum_{v} w_v \times \mathrm{dist}(u, v)\) 最小. 数据范围 \(n \le 10^5, q \le 10^5, \forall v, w_v \ge 0\) 题解 \(\text{Update on 2019.3.29:}\) 似乎可以二叉化就可以不用保证度…
这次聊聊「LDAP」. LDAP是「Lightweight Directory Access Protocol」的所有,从名字上可以看出是协议的一种. LDAP是访问数据库(层次型数据库)的组件.管理的数据主要是用户名,密码等「账户信息」,以及其它用户信息. LDAP用于「统一管理多台计算机的用户相关信息」.比如,对于教育机关或者企业等,有很多机器,也有很多用户的场合,LDAP就非常有帮助. 如果没有LDAP这种统一管理的组件,每台机器的用户信息都必须要一个一个进行登录.当然,用户信息发生变化的…