DW数据仓库】的更多相关文章

这两天接触到ODS,开始很纳闷,有了DW(Data Warehouse)干嘛还要ODS(Operational Data Store),于是不查不知道,一查吓一跳,这里面还有这么多道道,这里总结一下,当作学习了. 简单说: DW 数据仓库存储是一个面向主题的,反映历史变化数据,用于支撑管理决策. ODS 操作型数据存储,存储的是当前的数据情况,给使用者提供当前的状态,提供即时性的.操作性的.集成的全体信息的需求. ODS作为数据库到数据仓库的一种过渡形式,与数据仓库在物理结构上不同,能提供高性能…
https://blog.csdn.net/bjweimengshu/article/details/79256504 from Wikipedia 在计算机科学中,数据仓库(data warehouse,简称DW或DWH)也叫做企业数据仓库(EDW),是一种对数据进行分析和报表的系统,是商业智能(business intellgence简称BI)的核心组件.数仓是数据从一个或多个不同的源集成过程中的中心仓库.数仓从一个地方储存实时和历史数据,为所有企业的员工生成数据报表. 上传到数仓的数据来源…
一.Data仓库的架构 Data仓库(Data Warehouse DW)是为了便于多维分析和多角度展现而将Data按特定的模式进行存储所建立起来的关系型Datcbase,它的Data基于OLTP源Systam.Data仓库中的Data是细节的.集成的.面向主题的,以OLAPSystam的分析需求为目的. Data仓库的架构模型包括了星型架构与雪花型架构两种模式.星型架构的中间为事实表,四周为维度表,类似星星;而相比较而言,雪花型架构的中间为事实表,两边的维度表可以再有其关联子表,从而表达了清晰…
今天看了一些专业的解释,还是对ODS.DW和DM认识不深刻,下班后花时间分别查了查它们的概念. ODS——操作性数据 DW——数据仓库 DM——数据集市 1.数据中心整体架构   数据中心整体架构 数据仓库的整理架构,各个系统的元数据通过ETL同步到操作性数据仓库ODS中,对ODS数据进行面向主题域建模形成DW(数据仓库),DM是针对某一个业务领域建立模型,具体用户(决策层)查看DM生成的报表. 2.数据仓库的ODS.DW和DM概念   ods.dw.dm区分 3.ODS.DW.DM协作层次图…
原文链接:https://www.jianshu.com/p/72e395d8cb33 今天看了一些专业的解释,还是对ODS.DW和DM认识不深刻,下班后花时间分别查了查它们的概念. ODS——操作性数据 DW——数据仓库 DM——数据集市 1.数据中心整体架构 数据中心整体架构 数据仓库的整理架构,各个系统的元数据通过ETL同步到操作性数据仓库ODS中,对ODS数据进行面向主题域建模形成DW(数据仓库),DM是针对某一个业务领域建立模型,具体用户(决策层)查看DM生成的报表. 2.数据仓库的O…
在从 OLTP 业务数据库向 DW 数据仓库抽取数据的过程中,特别是第一次导入之后的每一次增量抽取往往会遇到这样的问题:业务数据库中的一些数据发生了更改,到底要不要将这些变化也反映到数据仓库中?在数据仓库中,哪些数据应该随之变化,哪些可以不用变化?考虑到这些变化,在数据仓库中的维度表又应该如何设计以满足这些需要. 很显然在业务数据库中数据的变化是非常自然和正常的,比如顾客的联系方式,手机号码等信息可能随着顾客的所在地的更改发生变化,比如商品的价格在不同时期有上涨和下降的变化.那么在业务数据库中,…
在很多MYSQL环境中,对于MYSQL的分布式事物处理一直是个难题,在当前互联网环境中,大多数应用系统是基于SOA的很多复杂接口之间的调用,并且事物之间的处理优先级也是有先后的,所以对于实际入库的数据而言,不同的系统,对于当前入库的处理方式是不一样的,这样就衍生出了对于订阅MYSQL消息的需求. 在公司内部,这套分布式消息系统负责了各个子接口之间数据的衔接,同时肩负后端DW数据仓库的实时消息计算,多数的RDBMS数据,被分解成各种子消息队列,通过不同的topic被各种消费者订阅. 一.如何分解消…
对于SQL Server数据库来说,性能一直是一个绕不开的话题.而当我们去分析和研究性能问题时,执行计划又是一个我们一直关注的重点之一. 我们知道,在进行编译时,SQL Server会根据当前的数据库里的统计信息,在一定的时间内,结合本机资源,挑选一个当前最佳的执行计划去执行该语句. 那么数据库分析引擎如何使用这些统计信息的呢?数据库引擎会根据数据库里的统计信息,去计算每次操作大约返回多少行.这个动作称之为基数计算(cardinality estimation).数据库分析引擎会基于这些信息判断…
目录: 1.hadoop入门须知 2.hadoop环境搭建 3.hadoop mapreduce之WordCount例子 4.idea本地调试hadoop程序 5.hadoop 从mysql中读取数据写到hdfs 1)基本介绍 hadoop是什么?Hadoop是一个开源的框架,可编写和运行分不是应用处理大规模数据,是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式.Hadoop=HDFS(文件系统,数据存储技术相关)+ Mapreduce(数据处理),Hadoo…
开篇介绍 在从 OLTP 业务数据库向 DW 数据仓库抽取数据的过程中,特别是第一次导入之后的每一次增量抽取往往会遇到这样的问题:业务数据库中的一些数据发生了更改,到底要不要将这些变化也反映到数据仓库中?在数据仓库中,哪些数据应该随之变化,哪些可以不用变化?考虑到这些变化,在数据仓库中的维度表又应该如何设计以满足这些需要. 很显然在业务数据库中数据的变化是非常自然和正常的,比如顾客的联系方式,手机号码等信息可能随着顾客的所在地的更改发生变化,比如商品的价格在不同时期有上涨和下降的变化.那么在业务…
了解ORACLE培训OCA-OCP-OCM课程表考试号: OCA    1Z0-007$125    Oracle Database 10g:SQL Fundamentals 本课程培养学生必要的SQL技能.1Z0-042$125    Oracle Database 10g Administration I 你将学习如何安装和维护数据库,你也将理解Oracle数据库体系结构的概念,理解其组件在交互的时候是如何工作的.你还将学习如何创建可操作的数据库,妥善使用一种有效或者高效的解决方案处理各种结…

ODS

一般在带有ODS的系统体系结构中,ODS都设计为如下几个作用: 1.在业务系统和数据仓库之间形成一个隔离层 一般的数据仓库应用系统都具有非常复杂的数据来源,这些数据存放在不同的地理位置.不同的数据库.不同的应用之中,从这些业务系统对数据进行抽取并不是一件容易的事.因此,ODS用于存放从业务系统直接抽取出来的数据,这些数据从数据结构.数据之间的逻辑关系上都与业务系统基本保持一致,因此在抽取过程中极大降低了数据转化的复杂性,而主要关注数据抽取的接口.数据量大小.抽取方式等方面的问题. 2.转移一部分…
初识ETL 概念 ETL即Extract-Transform-Load.目的是将分散.凌乱.异质的数据整合在一起,为决策提供分析数据,是BI项目(Business Intellifence)项目中重要的一个环节,占据1/3左右时间.难点在于清洗转换数据,最终一般存入DW(Data Warehousing)中. 常用的实现方法有 工具:(如Qracle的OWB,SQL Server 2000 的DTS),工具么,肯定是方便但不灵活. SQL:编码实现,灵活但复杂 SQL与工具结合:结合两者的优点…
本文目录: 一.数据流向 二.应用示例 三.何为数仓DW 四.为何要分层 五.数据分层 六.数据集市 七.问题总结 导读 数仓在建设过程中,对数据的组织管理上,不仅要根据业务进行纵向的主题域划分,还需要横向的数仓分层规范.本文作者围绕企业数仓分层展开分析,希望对你有帮助. 因文章太长,本文不是完结版,文末可获取完整PDF版 从事数仓相关工作的人员都知道数仓模型设计的首要工作之一就是进行模型分层,可见模型分层在模型设计过程中的重要性,确实优秀的分层设计是一个数仓项目能否建设成功的核心要素,让数据易…
面向服务体系架构(SOA)和数据仓库(DW)的思考 基于 IBM 产品体系搭建基于 SOA 和 DW 的企业基础架构平台 当前业界对面向服务体系架构(SOA)和数据仓库(Data Warehouse,DW)都介绍的很多,提出了很多优秀的解决方案,但是一般是把 SOA 和 DW 单独考虑, SOA 和 DW 有着共同的目标—系统整合,由于基于不同的技术思路,提出了不同的方案.本文将围绕 SOA 和 DW 相结合的思路,基于 IBM 的产品,规划统一的数据库,搭建企业级的技术架构. 0 评论: 肖…
数据仓库知识之ODS/DW/DM - xingchaojun的专栏 - CSDN博客 数据仓库为什么要分层 - 晨柳溪 - 博客园 数据仓库的架构与设计 - Trigl的博客 - CSDN博客 数据仓库主题设计及元数据设计 - 数据库其他综合 - 红黑联盟 数据仓库 主题 标签 设计_百度搜索 数据仓库的模型设计 - zhaojike - CSDN博客 [漫谈数据仓库] 如何优雅地设计数据分层 - 51CTO.COM ODS DW DM 规范_百度搜索 数据仓库规范 数据仓库 规范_百度搜索 […
摘要: 当前业界对面向服务体系架构(SOA)和数据仓库(Data Warehouse,DW)都介绍的很多,提出了很多优秀的解决方案,但是一般是把 SOA 和 DW 单独考虑,SOA 和 DW 有着共同的目标——系统整合,由于基于不同的技术思路,提出了不同的方案.本文将围绕 SOA 和 DW 相结合的思路,基于 IBM 的产品,规划统一的数据库,搭建企业级的技术架构. SOA 和 DW 概念 随着 IT 技术的发展,SOA 和企业架构(Enterprise Architechture,EA)逐步融…
ylbtech-杂项-DB:DW/DWH(数据仓库) 数据仓库,英文名称为Data Warehouse,可简写为DW或DWH.数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合.它是单个数据存储,出于分析性报告和决策支持目的而创建. 为需要业务智能的企业,提供指导业务流程改进.监视时间.成本.质量以及控制. 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部 1. https://baike.baidu.com/item/数据仓库/3819…
文章背景: 相信大部分刚接触上面三个概念的同学,都多多少少会有些迷惑,现在我就给大家简单分析下这三者的关系,希望大家对这三者的概念理解有所帮助吧. 本文主要从下面两类关系来叙述上面三者的关系: 数据库(DB)和数据仓库(DW)的区别与联系 操作数据存储(ODS)和数据仓库(DW)的区别与联系 数据库与数据仓库的区别与联系 数据库与数据仓库基础概念: 数据库:传统的关系型数据库的主要应用,主要是基本的.日常的事务处理,例如银行交易. 数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line…
转载http://bigdata.51cto.com/art/201710/554810.htm 一.文章主题 本文主要讲解数据仓库的一个重要环节:如何设计数据分层!其它关于数据仓库的内容可参考之前的文章. 本文对数据分层的讨论适合下面一些场景,超过该范围场景 or 数据仓库经验丰富的大神就不必浪费时间看了. 数据建设刚起步,大部分的数据经过粗暴的数据接入后就直接对接业务. 数据建设发展到一定阶段,发现数据的使用杂乱无章,各种业务都是从原始数据直接计算而得. 各种重复计算,严重浪费了计算资源,需…
整体结构 在具体分析数据仓库之前先看下一下数据中心的整体架构以及数据流向   数据中心整体架构.png DB 是现有的数据来源,可以为mysql.SQLserver.文件日志等,为数据仓库提供数据来源的一般存在于现有的业务系统之中. ETL的是 Extract-Transform-Load 的缩写,用来描述将数据从来源迁移到目标的几个过程: Extract,数据抽取,也就是把数据从数据源读出来. Transform,数据转换,把原始数据转换成期望的格式和维度.如果用在数据仓库的场景下,Trans…
@ 目录 数据流向 何为数仓DW 主要特点 与数据库的对比 为何要分层 数据分层 数据运营层ODS 数据仓库层 数据细节层DWD 数据中间层DWM 数据服务层DWS(DWT) 数据应用层ADS 事实表 Fact Table 维表层Dimension(DIM) 临时表TMP 数据集市 区别数据仓库 问题总结 ODS与DWD区别? APP层干什么的? 附录 ETL 宽表 主题(Subject) 数据流向 应用示例 何为数仓DW Data warehouse(可简写为DW或者DWH)数据仓库,是在数据…
1. 引言 本篇主要讲述数据仓库系统的体系结构与组成要素.数据集市与数据仓库之间的关系.元数据的定义与作用. 在上一篇,笔者介绍了数据仓库的定义: "数据仓库是一个面向主题的.集成的.不可更新的.随时间不断变化的用来更好地支持企业或组织决策分析的数据集合." 数据仓库是区别于传统操作型数据库的数据集合,主要应用于分析型数据操作,支持企业全局的决策分析.但是要实现这一应用目的,单一的数据仓库是无法完成的,需要建立一个数据仓库系统. 基于数据仓库系统,完成数据从操作型数据库等数据源到数据仓…
数据分析系统的总体架构分为四个部分 —— 源系统.数据仓库.多维数据库.客户端(图一:pic1.bmp) 其中,数据仓库(DW)起到了数据大集中的作用.通过数据抽取,把数据从源系统源源不断地抽取出来,可能每天一次,或者每3个小时一次(当然是自动的).这个过程,我们称之为ETL过程. 那么,今天,我们就来谈一谈:如何搭建数据仓库,在这个过程中都应该遵循哪些方法和原则:然后介绍一些项目实践中的技巧. 一.数据仓库的架构 数据仓库(Data Warehouse DW)是为了便于多维分析和多角度展现而将…
DW组成部分简介 DW的组成部分有:针对数据源的分析.数据的ETL.数据的存储结构,元数据管理等. 数据源分析 主要是分析要抽取哪些数据,如何抽取(全量还是增量)?它的更新周期是怎么样的?它的数据质量如何? 确定数据的格式,数据的域. ETL ETL之前需要知道以下内容,数据源有哪些系统,各个业务系统的RDBMS是什么?是否存在手工维护的数据? 数据抽取分为直接抽取和间接抽取两种 . 直接抽取:直接从业务数据库到DW,中间没有任何过渡,需要你知道业务系统的授权,表名等信息. 间接抽取:采用文件交…
updated 2015.8.27 updated 2015.8.26 updated 2015.8.23 0. 说明 <数据仓库原理>系列博文,是笔者在学习数据仓库与商业智能时的读书笔记,现重新梳理思路,分享在这里,希望读者批评指正. 本系列主要包括以下几部分内容: [1].数据库与数据仓库 为什么有了数据库还需要数据仓库?什么又是数据仓库? [2].数据仓库系统的体系结构 数据仓库系统的体系结构包括哪些组成要素?各自的作用又是什么? [3].数据仓库与ODS 什么是ODS?为什么需要ODS…
DB.ETL.DW.OLAP.DM.BI关系结构图 在此大概用口水话简单叙述一下他们几个概念: (1)DB/Database/数据库——这里一般指的就是OLTP数据库,在线事物数据库,用来支持生产的,比如超市的买卖系统.DB保留的是数据信息的最新状态,只有一个状态!比如,每天早上起床洗脸照镜子,看到的就是当时的状态,至于之前的每天的状态,不会出现的你的眼前,这个眼前就是db. (2)DW/Data Warehouse/数据仓库——这里保存的是DB中的不同时间点的状态,比如,每天早上洗完照镜子时,…
DW一直以来是企业信息与决策支持系统的核心组件,随着各类日志.社交.传感等非结构化数据的加入,企业内部数据按指数级增长,传统DW已经达到一个关键临界点——需要大量的资源投入到硬件.优化.支持和维护中,当前大部分使用Apache Hadoop来处理各种来源的大数据,但传统数据仓库不允许最终用户查询非结构化数据,此外,传统数据仓库并没有针对低延迟大容量数据负载和高吞吐量复杂分析工作负载进行优化——而这是大数据的需求之一. 下面例举当前互联网行业基于大数据的数据仓库技术构架参考 目录: 大数据DW逻辑…
1.  概述 Infobright是一款基于独特的专利知识网格技术的列式数据库.Infobright简单易用,快速安装部署,使用中无需复杂操作,能大幅度减少管理工作:在应对50TB甚至更多数据量进行多并发复杂查询时,更能够显示出令人惊叹的速度.相比于MySQL,其查询速度提升了数倍甚至数十倍,在同类产品中单机性能处于领先地位.为企业剧增的数据规模.增长的客户需求以及较高的用户期望提供了全面的解决方案. Infobright是开源的MySQL数据仓库解决方案,引入了列存储方案,高强度的数据压缩,优…
ETL,Extraction-Transformation-Loading的缩写,中文名称为数据抽取.转换和加载. 大多数据仓库的数据架构可以概括为: 数据源-->ODS(操作型数据存储)-->DW-->DM(data mart) ETL贯穿其各个环节. ​一.数据抽取: 可以理解为是把源数据的数据抽取到ODS或者DW中. 1. 源数据类型: 关系型数据库,如Oracle,Mysql,Sqlserver等; 文本文件,如用户浏览网站产生的日志文件,业务系统以文件形式提供的数据等: 其他外…