spark shuffle读操作】的更多相关文章

提出问题 1. shuffle过程的数据是如何传输过来的,是按文件来传输,还是只传输该reduce对应在文件中的那部分数据? 2. shuffle读过程是否有溢出操作?是如何处理的? 3. shuffle读过程是否可以排序.聚合?是如何做的? ...... 概述 在 spark shuffle的写操作之准备工作 中的 ResultTask 和 ShuffleMapTask 看到了,rdd读取数据是调用了其 iterator 方法. 计算或者读取RDD org.apache.spark.rdd.R…
提出问题 1. spark shuffle的预聚合操作是如何做的,其中底层的数据结构是什么?在数据写入到内存中有预聚合,在读溢出文件合并到最终的文件时是否也有预聚合操作? 2. shuffle数据的排序是如何做的? 分区内的数据是否是有序的?若有序,spark 内部是按照什么排序算法来排序每一个分区上的key的? 3. shuffle的溢出操作和TaskMemoryManager的关系? 4. 在数据溢出阶段,内存中数据的排序是使用算法进行排序的? 5. 在溢出文件数据合并阶段,内存中的数据的排…
前言 在前两篇文章 spark shuffle的写操作之准备工作 中引出了spark shuffle的三种实现,spark shuffle写操作三部曲之BypassMergeSortShuffleWriter 讲述了BypassMergeSortShuffleWriter 用于shuffle写操作的具体细节,实现相对比较朴素,实现比较朴素,值得参考和学习.本篇文章,主要剖析了 UnsafeShuffleWriter用作写shuffle数据的具体细节.下面先来看UnsafeShuffleWrite…
前言 再上一篇文章 spark shuffle的写操作之准备工作 中,主要介绍了 spark shuffle的准备工作,本篇文章主要介绍spark shuffle使用BypassMergeSortShuffleWriter写数据详细细节. 在本篇文章中如果有不了解的术语,也可以参照 spark shuffle的写操作之准备工作  做进一步了解. 这种shuffle写数据的方式是最简单的,spark计划在以后会移除这种shuffle机制. 先上源码,后解释: 流程如下: map数据根据分区函数写入…
前言 在前三篇文章中,spark 源码分析之十九 -- DAG的生成和Stage的划分 剖析了DAG的构建和Stage的划分,spark 源码分析之二十 -- Stage的提交 剖析了TaskSet任务的提交,以及spark 源码分析之二十一 -- Task的执行细节剖析了Task执行的整个流程.在第三篇文章中侧重剖析了Task的整个执行的流程是如何的,对于Task本身是如何执行的 ResultTask 和 ShuffleMapTask两部分并没有做过多详细的剖析.本篇文章我们针对Task执行的…
shuffle读过程源码分析 上一篇中,我们分析了shuffle在map阶段的写过程.简单回顾一下,主要是将ShuffleMapTask计算的结果数据在内存中按照分区和key进行排序,过程中由于内存限制会溢写出多个磁盘文件,最后会对所有的文件和内存中剩余的数据进行归并排序并溢写到一个文件中,同时会记录每个分区(reduce端分区)的数据在文件中的偏移,并且把分区和偏移的映射关系写到一个索引文件中. 好了,简单回顾了写过程后,我们不禁思考,reduce阶段的数据读取的具体过程是什么样的?数据读取的…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于Map,Map的输出即是Reduce…
Spark Shuffle 1. Shuffle相关 当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle.由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率.概念上shuffle就是一个沟通数据连接(map和reduce)的桥梁.每个ReduceTask从每个Map Task产生数的据中读取一片数据,极限情况下可能触发M*R个数据拷贝通道(M是MapTask数…
Shuffle简介 Shuffle描述着数据从map task输出到reduce task输入的这段过程.shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量.因为在分布式情况下,reduce task需要跨节点去拉取其它节点上的map task结果.这一过程将会产生网络资源消耗和内存,磁盘IO的消耗.通常shuffle分为两部分:Map阶段的数据准备和Reduce阶段的数据拷…
1.Shuffle流程 spark的shuffle过程如下图所示,和mapreduce中的类似,但在spark2.0及之后的版本中只存在SortShuffleManager而将原来的HashShuffleManager废弃掉(但是shuffleWriter的子类BypassMergeSortShuffleWriter和已经被废弃掉的HashShuffleWriter类似).这样,每个mapTask在shuffle的sort阶段只会生成一个结果文件,单个文件按照partitionId分成多个reg…
Shuffle简介 Shuffle的本意是洗牌.混洗的意思,把一组有规则的数据尽量打乱成无规则的数据.而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则"打乱"成具有一定规则的数据,以便reduce端接收处理.其在MapReduce中所处的工作阶段是map输出后到reduce接收前,具体可以分为map端和reduce端前后两个部分. 在shuffle之前,也就是在map阶段,MapReduce会对要处理的数据进行分片(split)操作,…
Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析: 1.ShuffleManager Spark在初始化SparkEnv的时候,会在create()方法里面初始化ShuffleManager // Let the user specify short names for shuffle managers val shortShuffleMgrNames = Map…
1.Shuffle Write 和Shuffle Read具体发生在哪里 2.哪里用到了Partitioner 3.何为mapSideCombine 4.何时进行排序 之前已经看过spark shuffle源码了,现在总结一下一些之前没有理解的小知识点,作为一个总结. 用户自定义的Partitioner存到了哪里? 假设用户在调用reduceByKey时,传递了一个自定义的Partitioner,那么,这个Partitioner会被保存到ShuffleRDD的ShuffleDependency中…
shuffle...相当重要,为什么咩,因为shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量.相比于Hadoop的MapReduce,可以看到Spark提供多种计算结果处理方式,对shuffle过程进行了优化. 那么我们从RDD的iterator方法开始: 我们可以看到,它调用了cacheManager的getOrCompute方法,如果分区任务第一次执行还没有缓存,那么会调用computeOrReadCheckpoint.如果某个partition任务执行失败,可以利用DAG重新调…
有许多场景下,我们需要进行跨服务器的数据整合,比如两个表之间,通过Id进行join操作,你必须确保所有具有相同id的数据整合到相同的块文件中.那么我们先说一下mapreduce的shuffle过程. Mapreduce的shuffle的计算过程是在executor中划分mapper与reducer.Spark的Shuffling中有两个重要的压缩参数.spark.shuffle.compress true---是否将会将shuffle中outputs的过程进行压缩.将spark.io.compr…
Apache Spark探秘:Spark Shuffle实现 http://dongxicheng.org/framework-on-yarn/apache-spark-shuffle-details/ 对于大数据计算框架而言,Shuffle阶段的设计优劣是决定性能好坏的关键因素之一.本文将介绍目前Spark的shuffle实现,并将之与MapReduce进行简单对比.本文的介绍顺序是:shuffle基本概念,MapReduce Shuffle发展史以及Spark Shuffle发展史. (1)…
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所…
1.官网  http://spark.apache.org/docs/1.6.1/configuration.html#shuffle-behavior Spark数据进行重新分区的操作就叫做shuffle过程 2.介绍 SparkStage划分的时候,将最后一个Stage称为ResultStage(ResultTask),其它Stage叫做ShuffleMapStage(ShuffleMapTask) 3.SparkShuffle实现 基于ShuffleManager来实现,1.6.1版本中存…
spark shuffle 分为两种 1.byPassSortShuffle 发生条件分区数<=200:无排序及聚合操作 主要是直接按照分区号写文件,有多少分区写多少文件 不做任何排序,简单直接 2.baseSortShuffle 发生条件 1.代码中指定聚合 但是没指定排序规则,会按照分区排序,并按照key的hashcode排序,在归并之时 维护两个数组 做聚合及输出 2.代码中指定聚合并指定了排序规则,会按照分区排序,并按照key的指定规则排序(这个过程跟mr的流程一样,不多做叙述) 3.代…
转载:http://www.cnblogs.com/jcchoiling/p/6494652.html 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所以掌握Spark对JVM的内存使用内幕是至关重要的.很多人对 Spark 的印象是:它是基于内存的,而且可以缓存一大堆数据…
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.sortByKey 8.cogroup 9.join 10.LeftOutJoin 11.RightOutJoin 1.map(func) 2.flatMap(func) 3.mapPartitions(func) 4.mapPartitionsWithIndex(func) 5.simple(with…
  本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢…
Spark Shuffle原理解析 一:到底什么是Shuffle? Shuffle中文翻译为“洗牌”,需要Shuffle的关键性原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算. 二:Shuffle可能面临的问题?运行Task的时候才会产生Shuffle(Shuffle已经融化在Spark的算子中了). 1, 数据量非常大: 2, 数据如何分类,即如何Partition,Hash.Sort.钨丝计算: 3, 负载均衡(数据倾斜): 4, 网络传输效率,需要在压缩和解压缩之间做出权…
这篇文章会详细介绍,Sort Based Shuffle Write 阶段是如何进行落磁盘的 流程分析 入口处: org.apache.spark.scheduler.ShuffleMapTask.runTask runTask对应的代码为: val manager = SparkEnv.get.shuffleManager writer = manager.getWriter[Any, Any]( dep.shuffleHandle, partitionId, context) writer.…
spark shuffle流程分析 回到ShuffleMapTask.runTask函数 如今回到ShuffleMapTask.runTask函数中: overridedef runTask(context:TaskContext): MapStatus = { 首先得到要reduce的task的个数. valnumOutputSplits= dep.partitioner.numPartitions metrics= Some(context.taskMetrics) valblockMana…
对性能消耗的原理详解 在分布式系统中,数据分布在不同的节点上,每一个节点计算一部份数据,如果不对各个节点上独立的部份进行汇聚的话,我们计算不到最终的结果.我们需要利用分布式来发挥Spark本身并行计算的能力,而后续又需要计算各节点上最终的结果,所以需要把数据汇聚集中,这就会导致Shuffle,这也是说为什么Shuffle 是分布式不可避免的命运.因为Shuffle 的过程中会产生大量的磁盘 IO.网络 IO.以及压缩.解压缩.序列化和反序列化的操作,这一系列的操作对性能都是一个很大的负担. 调优…
1:sparkconf.set("spark.shuffle.file.buffer","64K") --不建议使用,因为这么写相当于硬编码2:在conf/spark-default.conf ---不建议使用,相当于硬编码3:./spark-submit --conf spark.shuffle.file.buffer=64 --conf spark.reducer.maxSizeInFlight=96 --建议使用 spark.shuffle.file.buff…
源文件放在github,随着理解的深入,不断更新,如有谬误之处,欢迎指正.原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/sort-shuffle.md 正如你所知,spark实现了多种shuffle方法,通过 spark.shuffle.manager来确定.暂时总共有三种:hash shuffle.sort shuffle和tungsten-sort shuffle,从1.2.0开始默认为sort sh…
  在Spark或Hadoop MapReduce的分布式计算框架中,数据被按照key分成一块一块的分区,打散分布在集群中各个节点的物理存储或内存空间中,每个计算任务一次处理一个分区,但map端和reduce端的计算任务并非按照一种方式对相同的分区进行计算,例如,当需要对数据进行排序时,就需要将key相同的数据分布到同一个分区中,原分区的数据需要被打乱重组,这个按照一定的规则对数据重新分区的过程就是Shuffle(洗牌). Spark Shuffle的两阶段 对于Spark来讲,一些Transf…