CNN反向传播更新权值】的更多相关文章

背景 反向传播(Backpropagation)是训练神经网络最通用的方法之一,网上有许多文章尝试解释反向传播是如何工作的,但是很少有包括真实数字的例子,这篇博文尝试通过离散的数据解释它是怎样工作的. Python实现的反向传播 你能使用Python来实现反向传播,我曾经在this Github repo上实现了反向传播算法. 反向传播的可视化 显示神经网络学习时相互作用的可视化,检查我的Neural Network visualization. 另外的资源 如果你发现这个教程对你有用并且想继续…
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度神经网络(DNN)反向传播算法(BP) 1. 回顾DNN的反向传播算法 我们首先回顾DNN的反向传播算法.在DNN中,我们是首先计算出输出层的$\delta^L$:$$\delta^L = \frac{\partial J(W,b)}{\partial z^L} = \frac{\partial J…
主模块 规格数据输入(加载,调格式,归一化) 定义网络结构 设置训练参数 调用初始化模块 调用训练模块 调用测试模块 画图 初始化模块 设置初始化参数(输入通道,输入尺寸) 遍历层(计算尺寸,输入输出通道,参数数量,w,b) 设置输出标签数 设置最后一层的神经元数 设置输出神经元的偏置 设置最后一层和输出神经元间的权重 训练模块 计算训练批数(读取样本个数,每批数目) 批循环 读取每批样本 前向传播 反向传播 更新参数 更新误差曲线 前向传播模块 读取层数 遍历层 判断层的类型 *卷积层: *池…
症状:前向计算一切正常.梯度反向传播的时候就出现异常,梯度从某一层开始出现Nan值(Nan: Not a number缩写,在numpy中,np.nan != np.nan,是唯一个不等于自身的数). フォワードの計算に異常なしでも.その模型の変量をアプデートする時に異常な数字が出る.Pythonのプログラムにあるなら.Nanというもの現れることです. 根因:原因目前遇到的分为两种,其一——你使用了power(x, a) (a < 1)这样的算子,因为power函数这样的算子,在梯度反向传播阶段…
网络结构(6c-2s-12c-2s): 初始化: \begin{align}\notag W \sim U(- \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}} , \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}) \end{align} \begin{align}\notag Var(W_i) = \frac{1}{n_i} ; Var(W_i) = \frac{1}{n_{i+1}} ; Var(W_i) = \frac{1}{n_i + n_{…
在一般的全联接神经网络中,我们通过反向传播算法计算参数的导数.BP 算法本质上可以认为是链式法则在矩阵求导上的运用.但 CNN 中的卷积操作则不再是全联接的形式,因此 CNN 的 BP 算法需要在原始的算法上稍作修改.这篇文章主要讲一下 BP 算法在卷积层和 pooling 层上的应用. 原始的 BP 算法 首先,用两个例子回顾一下原始的 BP 算法.(不熟悉 BP 可以参考How the backpropagation algorithm works,不介意的话可以看我的读书笔记) 最简单的例…
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小.  b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是…
在看CNN和RNN的相关算法TF实现,总感觉有些细枝末节理解不到位,浮在表面.那么就一点点扣细节吧. 这个作者讲方向传播也是没谁了,666- 原文地址:https://www.cnblogs.com/charlotte77/p/5629865.html 最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/234 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用.如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容…