GCD和扩展GCD】的更多相关文章

gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解   辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+p 如果a是与b的最大公约数是gcd(a,b),那么b与p的最大公约数也是gcd(a,b) 即 gcd(a,b)=gcd(b,p)=gcd(b,a%b),然后我们令a=b,b=a%b,然后再进行以上步骤 以此类推,a与b的值会越来越小,直到某一时刻a变成了b的倍数,使得a%b=0,但是后来赋值使得a…
gcd(a, b)用于求解自然数a,b的最大公约数 int gcd(int a, int b) { ) return a; return gcd(b, a%b); } extgcd(a, b, x, y)用于求解方程ax+by = 1的一组解,并返回a,b的最大公约数 int exgcd(int a, int b, int &x, int &y) { int d = a; ) { d = exgcd(b, a%b, y, x); y -= (a/b)*x; } else { x = ; y…
设两只青蛙跳了t步,则此时A的坐标:x+mt,B的坐标:y+nt.要使的他们在同一点,则要满足: x+mt - (y+nt) = kL (p是整数) 化成: (n-m)t + kL = x-y (L > 0)  则变成求解同余方程: (n-m)t ≡ (x-y) mod L  ,用扩展gcd解决. 且此时当 (x-y) % gcd(n-m,L) == 0 时才有解. 解同余方程ax+by = m时,假设我们已经求出了一对x0,y0,则 x0 = x*m/gcd(a,b) ,此时x0可能不是正整数…
题目链接:http://poj.org/problem?id=1061 解题报告:两只青蛙在地球的同一条纬度线上,选取一个点位坐标轴原点,所以现在他们都在同一个首尾相连的坐标轴上,那么他们现在的位置分别是x和y,他们每次跳的时间是一样的,跳的距离分别是m,n,现在他们像同一个方向开始跳,要你求出最少跳多少步会出现在同一个位置. 扩展GCD,k * m + x - (k * n + y) = c * l;       //跳了k步之后相遇,这时候到原点的距离之差会是周长的整数倍 变形之后得: k…
题目链接 题意:两只青蛙从数轴正方向跑,给出各自所在位置, 和数轴长度,和各自一次跳跃的步数,问最少多少步能相遇. 分析:(x+m*t) - (y+n*t) = p * L;(t是跳的次数,L是a青蛙跳的圈数跟b青蛙的圈数之差.整个就是路程差等于纬度线周长的整数倍). (x+m*t)- (y+n*t) = p*L; (n-m)*t  + p*L = x - y; 令a = n-m; b = L; c = x-y;  d = gcd(a, b); a *t  + b*p = c; 这道题的思路都是…
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展gcd, 不是用逆元吗.. 网上还有别人的解释,没看懂,贴一下: (a / b) % m = ( a % (m*b)) / b 笔者注:鉴于ACM题目特别喜欢M=1000000007,为质数: 当gcd(b,m) = 1, 有性质: (a/b)%m = (a*b^-1)%m, 其中b^-1是b模m的逆…
BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数.   分析: 各种板子题   代码: // luogu-judger-enable-o2 // luogu-judger-enable-o2 #include <std…
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^{18}$. 求解这个问题有一种方法,叫做扩展欧几里得算法(简称扩欧),其本质是一个递归求解的过程. 首先由一个前置的结论是$gcd(x,y)=gcd(y,x\%y)$.此处的$\%$为$c++$中取模操作,下同. 我们不妨设$a>b$ 当$a≠0,b=0$时,则显然有$x=1,y=0$.此时$gc…
1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题:有一正整数ans,对于每一对数,都有:(ans-a[i])mod m[i]=0.求此数最小为多少. 输入样例: - - - - 实现代码: #include <fstream> #include <iostream> #include <algorithm> #includ…
扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x=1,y=0\)即可 否则:显然\(\gcd(a,b)=\gcd(b,a\mod b)\) 那么可以递归球解\(bx+(a\mod b)y=\gcd(a,b)\)的解. 然后还是要推当前\(x,y\)的. 设\(bx+(a\mod b)y=\gcd(a,b)\)的解为\(x_0,y_0\), \(a…