BP_Adaboost 模型及其分类应用】的更多相关文章

一.BP_ Adaboost模型 Adaboost 算法的思想是合并多个“弱”分类器的输出以产生有效分类.其主要步骤为 : (1)首先给出弱学习算法和样本空间(x, y) ,从样本空间中找出 m 组训练数据,每组训练数据的权重都是 1 /m. (2)用弱学习算法迭代运算 T 次,每次运算后都按照分类结果更新训练数据权重分布,对于分类失败的训练个体赋予较大权重,下一次迭代运算时更加关注这些训练个体.弱分类器通过反复迭代得到一个分类函数序列 f1, ,f2 , … , fT ,每个分类函数赋予一个权…
5.1 案例背景 5.1.1 BP_Adaboost模型 Adaboost算法的思想是合并多个“弱”分类器的输出以产生有效分类.其主要步骤为:首先给出弱学习算法和样本空间($X$,$Y$),从样本空间中找出$m$组训练数据,每组训练数据的权重都是$\frac{1}{m}$.然后用弱学习算法迭代运算$T$次,每次运算后都按照分类结果更新训练数据权重分布,对于分类失败的训练个体赋予较大权重,下次迭代运算时更加关注这些训练个体.弱分类器通过反复迭代得到一个分类函数序列${f_1},{f_2},...,…
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https://cran.r-project.org/web/packages/softmaxreg/index.html ------------------------------------------------------------------ 一.介绍 Softmax Regression模型本质还是…
一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯模…
一步步教你轻松学KNN模型算法( 白宁超 2018年7月24日08:52:16 ) 导读:机器学习算法中KNN属于比较简单的典型算法,既可以做聚类又可以做分类使用.本文通过一个模拟的实际案例进行讲解.整个流程包括:采集数据.数据格式化处理.数据分析.数据归一化处理.构造算法模型.评估算法模型和算法模型的应用.(本文原创,转载必须注明出处: 一步步教你轻松学KNN模型算法) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学习:一步步教你轻松学…
使用之前那个格式写法到后面层数多的话会很乱,所以编写了一个函数创建层,这样看起来可读性高点也更方便整理后期修改维护 #全连接层函数 def fcn_layer( inputs, #输入数据 input_dim, #输入层神经元数量 output_dim,#输出层神经元数量 activation =None): #激活函数 W = tf.Variable(tf.truncated_normal([input_dim,output_dim],stddev = 0.1)) #以截断正态分布的随机初始化…
实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配; 基于理解的句法和语义分析消歧: 基于统计的互信息/CRF方法: WordEmbedding + Bi-LSTM+CRF方法 去停用词:维护一个停用词表 (2)特征提取 特征选择的基本思路是根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的…
概述 Apple的Core ML 3是一个为开发人员和程序员设计的工具,帮助程序员进入人工智能生态 你可以使用Core ML 3为iPhone构建机器学习和深度学习模型 在本文中,我们将为iPhone构建一个全新的应用程序! 介绍 想象一下,在不需要深入了解机器学习的情况下,使用最先进的机器学习模型来构建应用程序.这就是Apple的Core ML 3! 你是Apple的狂热粉丝吗?你用iPhone吗?有没有想过Apple是如何利用机器学习和深度学习来驱动其应用和软件的? 如果你对以上任何一个问题…
ResNet-50模型图像分类示例 概述 计算机视觉是当前深度学习研究最广泛.落地最成熟的技术领域,在手机拍照.智能安防.自动驾驶等场景有广泛应用.从2012年AlexNet在ImageNet比赛夺冠以来,深度学习深刻推动了计算机视觉领域的发展,当前最先进的计算机视觉算法几乎都是深度学习相关的.深度神经网络可以逐层提取图像特征,并保持局部不变性,被广泛应用于分类.检测.分割.检索.识别.提升.重建等视觉任务中. 本文结合图像分类任务,介绍MindSpore如何应用于计算机视觉场景. 图像分类 图…
摘要:通过一个垃圾分类应用的开发示例,介绍AI Gallery在AI应用开发流程中的作用. 本文分享自华为云社区<AI Gallery:从0到1开发AI图像分类应用>,作者: yd_269359708 . 现如今,人工智能(AI)技术在计算机领域内,得到了越来越广泛的重视,并在各行各业中得到应用.然而无论是AI开发的初学者,还是资深的AI开发专家,在AI 应用开发工程中,都会面临着不小的麻烦.我们今天要介绍的AI Gallery,就是一个开放的开发者生态社区,提供了数据集.算法.模型等AI数字…