强连通分量-----Kosaraju】的更多相关文章

http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标号最大的结点开始遍历. 对于这道题,在求解强连通分量之后,能被所有点可达只可能是最后一个强连通块,根据遍历时的拓扑序,我们可以计算出最后一个的结点个数. 但是我们最后还是要判断一下,这个连通块是不是任意结点可达. #include<iostream> #include<algorithm&g…
一.前人种树 博客:Kosaraju算法解析: 求解图的强连通分量…
这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点. 算法复杂度: Kosaraju算法:初始化,加边,两次dfs,复杂度O(n+m) 强连通分量缩点算法:遍历每个点每条边,复杂度O(n+m) 对边排序去重:复杂度O(n+mlogm) 注意: 1.最好先 Init() ,然后再 AddEdge() 2.维护缩点时点的性质对新点的影响在 dfs2() 中进行 3.维护缩点时边…
Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis[v]) dfs1(v); s.push_back(u); } void dfs2(int u) { color[u] = sccCnt; for (int v : g2[u]) if (!color[v]) dfs2(v); } void Kosaraju() { s.clear(); for (int i…
芝士: 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量. 如图中1,2,3,4是一个强连通分量. Kosaraju算法: 如果这是一个无向图,那么从一个节点出发,深搜得到的所有节点都是连通的. 但这是一个有向图,起始节点的不同会导致结果的不同,举个栗子,从5搜…
输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vector> using namespace std; ; struct Edge{ int go,next; }; ,book[maxn]; vector<int> S; vector<int> G[maxn],G2[maxn]; void dfs(int u) { vis[u]=…
#include<cstdio> #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> using namespace std; ; ; inline int read(){ ; ; char x = getchar(); '<x){ ; x=getchar(); } '){ a=(a<<)+(a<<)+x-'; x=ge…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M).更好的…
求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序.以下图为例: G图 结点第二次被访问即为退出之时,那么我们可以得到结点的退出顺序 (2)倒转每一条边的方向,构造出一个反图G’.然后按照退出顺序的逆序对反图进行第二次DFS遍历.我们按1.4.2.3.5的逆序第二次DFS遍历: G`图   访问过程如下: 每次遍历得到的那些点即属于同一个强连通分量…
Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 23445   Accepted: 9605 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M &l…
Kosaraju算法解析: 求解图的强连通分量 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 定义 连通分量:在无向图中,即为连通子图. 上图中,总共有四个连通分量.顶点A.B.C.D构成了一个连通分量,顶点E构成了一个连通分量,顶点F,G和H,I分别构成了两个连通分量. 强连通分量:有向图中,尽可能多的若干顶点组成的子图中,这些顶点都是相互可到达的,则这些顶点成为一个强连通分量. 上图中有三个强连通分量,分别是a.b.e以…
理解   在有向图G中,如果两点互相可达,则称这两个点强连通,如果G中任意两点互相可达,则称G是强连通图. 定理: 1.一个有向图是强连通的,当且仅当G中有一个回路,它至少包含每个节点一次.             2.非强连通有向图的极大强连通子图,称为强连通分量(SCC即Strongly Connected Componenet). 在上图中,{1,2,3,4}是一个强连通分量,{5},{6}分别是另外两个强连通分量.怎么判断一个图是否是强连通图,如果不是,有哪些强连通分量,又怎么使它成为强…
Kosaraju 这个算法是用来求解图的强连通分量的,这个是图论的一些知识,前段时间没有学,这几天在补坑... 强连通分量: 有向图中,尽可能多的若干顶点组成的子图中,这些顶点都是相互可到达的,则这些顶点成为一个强连通分量 如下图所示,a.b.e以及f.g和c.d.h各自构成一个强联通分量 Kosaraju的求解方法 对于一个无向图的连通分量,从连通分量的任意一个顶点开始进行一次DFS,一定是可以遍历这个连通分量的所有定点的.所以,整个图的连通分量数就等价于我们对于这个图找了几次起点(也就是我们…
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和顶点W是强连通的,那么顶点W和顶点V也是强连通的 传递性:如果V和W是强连通的,W和X是强连通的,那么V和X也是强连通的 强连通性可以用来描述一系列属性,如自然界中物种之间的捕食关系,互相捕食的物种可以看作等价的,在自然界能量传递中处于同一位置. 下图中,子图{1,2,3,4}为一个强连通分量,因为…
有向图中,连通性比较好理解,如果两个顶点V和顶点W是可达的,可以称之为强连通的,即存在路径A→B,同时也存在一条有向路径B→A.从之前的有向环的判定过程中其实我们可以得到一个结论就是两个是强连通的当且仅当它们都在一个普通的有向环中.强连通将所有的顶点分为了不同的集合,每个集合都是由相互均为强连通性的顶点的最大子集组成的,我们将这些集合称之为强连通分量. 基础概念 一般来说技术服务于生活,如果将我们看到网页作为顶点,页面指向另外一个页面的超链接作为边,可以将数量庞大的网页分为不同的大小进行处理,作…
在了解kosaraju算法之前我们先了解一下什么是强连通分量,在有向图中如果两个定点vi,ui存在一条路劲从vi到达ui且也存在一条路劲从ui到达vi那么由ui和vi这两个点构成的图成为强连通图,简洁一点就是存在两个或两个点以它们之间可以相互可达由这些点构成的图就称之为强连通图它们的存在形式可以如下 当然一个点也是一个强连通分量,它们都满足所有点之间都可以互相可达. 以上就是对强连通分量的介绍接下来对kosaraju算法思路进行分析. 我们将对下面这个图进行对kosaraju算法进行解析: 我们…
什么是强连通分量?在这之前先定义一个强连通性(strong connectivity)的概念:有向图中,如果一个顶点s到t有一条路径,t到s也有一条路径,即s与t互相可达,那么我们说s与t是强连通的.那么在有向图中,由互相强连通的顶点构成的分量,称作强连通分量. 一:对于kosaraju算法,这是一个比tarjan较复杂的算法,但是因为一本通上介绍了这种算法,我就找几个题目练习了一下. kosaraju算法:可以求出强连通分量的个数,还可以对分属于不同强连通分量的点进行标记. 算法描述:(1):…
有向图的连通分量的求解思路 kosaraju算法 逛了很多博客,感觉都很难懂,终于找到一篇能看懂的,摘要记录一下 原博客https://www.cnblogs.com/nullzx/p/6437926.html 关于连通分量是什么自行百度,这里主要说明连通分量的求解方法 基本思路:第一次DFS得出顶点的顺序,根据顶点顺序进行第二次DFS,也就是逆后序遍历(手动模拟一下堆栈就知道第二次DFS的过程就能得出答案). 为什么要两次DFS? 如果从连通分量A中任意一个定点DFS,得不到正确结果.应该按照…
阅读前请确保自己知道强连通分量是什么,本文不做赘述. Tarjan算法 一.算法简介 Tarjan算法是一种由Robert Tarjan提出的求有向图强连通分量的时间复杂度为O(n)的算法. 首先我们要知道两个概念:时间戳(DFN),节点能追溯到的最早的栈中节点的时间戳(LOW).顾名思义,DFN就是在搜索中某一节点被遍历到的次序号(dfs_num),LOW就是某一节点在栈中能追溯到的最早的父亲节点的搜索次序号. Tarjan算法是基于深度优先搜索的算法.在搜索过程中把没有Tarjan过的点入栈…
codevs 题意:求最大强连通分量的大小以及所包含的顶点有哪些 Tarjan算法 #include<iostream> #include<queue> #include<list> #include<vector> #include<cstring> #include<set> #include<stack> #include<map> #include<cmath> #include<al…
PS:在贴出代码之前,我得说明内容来源——哈尔滨工业大学出版的<图论及应用>.虽然有一些错误的地方,但是不得不说是初学者该用的书. 从效率的角度来说,Kosaraju <Tarjan<Garbow.一般网上有前两种的代码和分析.Garbow算法是Tarjan的另一种实现,但是Garbow效率更高. 不过从复杂度来说,三种算法的时间(空间)复杂度都是O(m +n). 模版的调用方式很简单,初始化,建图,调用Tarjan(n)或者Kosaraju(n)或者 Garbow(n), scc…
poj 2186 Popular Cows 题意: 有N头牛, 给出M对关系, 如(1,2)代表1欢迎2, 关系是单向的且能够传递, 即1欢迎2不代表2欢迎1, 可是假设2也欢迎3那么1也欢迎3. 求被全部牛都欢迎的牛的数量. 限制: 1 <= N <= 10000 1 <= M <= 50000 思路: Kosaraju算法, 看缩点后拓扑序的终点有多少头牛, 且要推断是不是全部强连通分量都连向它. Kosaraju算法.分拆完连通分量后,也完毕了拓扑序. /*poj 2186…
有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 采用的算法是Kosaraju算法. 算法原理:对于图G,转置图(同图中的每边的方向相反)具有和原图完全一样的强连通分量. 具体实现: 1.对原图G进行深度优先遍历,记录每个节点的离开时间time[i]. 2…
强连通分量分解的Kosaraju算法 今天是算法数据结构专题的第35篇文章,我们来聊聊图论当中的强连通分量分解的Tarjan算法. Kosaraju算法一看这个名字很奇怪就可以猜到它也是一个根据人名起的算法,它的发明人是S. Rao Kosaraju,这是一个在图论当中非常著名的算法,可以用来拆分有向图当中的强连通分量. 背景知识 这里有两个关键词,一个是有向图,另外一个是强连通分量.有向图是它的使用范围,我们只能使用在有向图当中.对于无向图其实也存在强连通分量这个概念,但由于无向图的连通性非常…
/* 题目大意:有N个cows, M个关系 a->b 表示 a认为b popular:如果还有b->c, 那么就会有a->c 问最终有多少个cows被其他所有cows认为是popular! 思路:强连通分量中每两个节点都是可达的! 通过分解得到最后一个连通分量A, 如果将所有的强连通分量看成一个大的节点,那么A一定是孩子节点(因为我们先 完成的是父亲节点的强连通分量)! 最后如果其他的强连通分量都可以指向A,那么 A中的每一个cow都会被其他cows所有的cows认为popular! *…
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 直接根据定义,用双向遍历取交集的方法求强连通分量,…
和无向图的连通分量类似,有向图有“强连通分量”的说法.“相互可达”的关系在有向图中也是等价关系.每一个集合称为有向图的一个强连通分量(scc).如果把一个集合看成一个点,那么所有的scc构成了一个scc图.这个scc图不会存在任何有向环,因此是一个DAG.求解有向图强连通分量的算法一般都是基于dfs的,常用的算法有Kosaraju算法和Tarjan算法,下面给出Tarjan算法的代码: vector<int> G[maxn]; int pre[maxn], low_link[maxn], sc…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继介…
[有向图强连通分量] 在有向图G中,如果两个 顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继…
题目问一个有向图所有点都能达到的点有几个. 先把图的强连通分量缩点,形成一个DAG,那么DAG“尾巴”(出度0的点)所表示的强连通分量就是解,因为前面的部分都能到达尾巴,但如果有多个尾巴那解就是0了,因为尾巴间达到不了.判断是否有多个尾巴,可以从最后一个强连通分量中的某一个点出发看能否在逆图上遍历完其他点. 因为用到了逆图,所以直接用Kosaraju算法. #include<cstdio> #include<cstring> #include<vector> #incl…