CNN网络改善的方法——池化】的更多相关文章

一个能降低卷积金字塔中特征图的空间维度,目前为止,我们通过调整步幅,将滤镜每次移动几个像素.图1 从而降低特征图的尺寸.这是降低图像采样率的一种非常有效的方法. 图1 它移除了很多信息,如果我们不采用每两个卷积跳过一个的方法,二依然执行非常小的步幅,比如说1. 但是我们通过某种方法把相邻的所有卷积结合在一起,这种操作就叫做池化 有几种方法可以实现它,最常见的是最大池化,图2 图2 在特征图的每一点,查看它周围很小范围的点,计算附近所有点的最大值.使用最大池化有很多优点, 首先他不会增加参数数量,…
相信各位在学习cnn的时候,常常对于卷积或者池化后所得map的的大小具体是多少,不知道怎么算.尤其涉及到边界的时候.   首先需要了解对于一个输入的input_height*input_widtht的图像,在卷积或者池化的时候,经常需要加padding,这是为了处理边界问题时而采用的一种方式,于是原输入就变成了下图所示:   对于输出的size计算 如下图: out_height=((input_height - filter_height + padding_top+padding_botto…
自然语言处理的CNN模型中几种常见的池化方法 本文是在[1]的基础上进行的二次归纳. 0x00 池化(pooling)的作用   首先,回顾一下NLP中基本的CNN模型的卷积和池化的大致原理[2].filter(特征抽取器,卷积核,CV上称之为滤波器)在一个窗口(text region)上可以抽取出一个特征值,filter在整个text上滑动,将抽取出一系列特征值组成一个特征向量.这就是卷积层抽取文本特征的过程.模型中的每一个filter都如此操作,形成了不同的特征向量.   pooling层则…
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率.Jakarta Commons Pool组件提供了一整套用于实现对象池化的框架,以及若干种各具特色的对象池实现,可以有效地减少处理对象池化时的工作量,为其它重要的工作留下更多的精力和时间.创建新的对象并初始化的操作,可能会消耗很多的时间.在这种对象的初始化工作包含了一些费时的操作(例如,从一台位于20,000千米以外的主机上读出一些数据)的时候,尤其是这样.在需要大量生成这样的对象的时候,就可能会对性能造成一些不…
池化层(Pooling layers) 除了卷积层,卷积网络也经常使用池化层来缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们来看一下.   先举一个池化层的例子,然后我们再讨论池化层的必要性.假如输入是一个4×4矩阵,用到的池化类型是最大池化(max pooling).执行最大池化的树池是一个2×2矩阵.执行过程非常简单,把4×4的输入拆分成不同的区域,我把这个区域用不同颜色来标记.对于2×2的输出,输出的每个元素都是其对应颜色区域中的最大元素值. 左上区域的最大值是9,右上区域…
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小.  b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是…
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter卷积后 得到了 17x17x20的数据 不填充且步长为2的情况下经过5x5的40个filter卷积后 得到了 7x7x40的最终结果 将7x7x40的卷积层全部展开作为输入特征,建立一个输入层单元数为1960的神经网络即可 卷积神经网络常见的结构: 1.Conv卷积层如上图所见 2.Pool池化层…
这里使用的数据集仍然是CIFAR-10,由于之前写过一篇使用AlexNet对CIFAR数据集进行分类的文章,已经详细介绍了这个数据集,当时我们是直接把这些图片的数据文件下载下来,然后使用pickle进行反序列化获取数据的,具体内容可以参考这里:第十六节,卷积神经网络之AlexNet网络实现(六) 与MNIST类似,TensorFlow中也有一个下载和导入CIFAR数据集的代码文件,不同的是,自从TensorFlow1.0之后,将里面的Models模块分离了出来,分离和导入CIFAR数据集的代码在…