luogu P4183 [USACO18JAN]Cow at Large P】的更多相关文章

传送门 首先考虑N^2做法,每次从一个点出发,如果到达一个点,然后到达这个点的时间\(\le\)离这个点最近的叶子距离\(di_x\),那么答案+1,否则继续找点 这个暴力很不好优化.可以这样认为,如果某个点贡献答案,那么子树里的点也要贡献答案(某个点走不下去,那么走子树内的点也走不下去,也符合条件),不过一个子树一共只贡献1.可以发现一个子树度数和\(\sum deg_i\),加上1为子树大小*2,即\(\sum 2-deg_i=1\),所以单次询问的答案就是所有符合条件的点的\(2-deg_…
题目链接 Bzoj崩了之后在洛谷偶然找到的点分好题! 在暴力的角度来说,如果我们$O(n)$枚举根节点,有没有办法在$O(n)$的时间内找到答案呢? 此时如果用树形$dp$的想法,发现是可做的,因为可以推得以下的结论: 设$x$为根节点,$d[i]$为$i$节点到$x$的距离(即深度),$g[i]$为$i$节点到最近的出入口(即叶子节点)的距离,$ans_{x}$为以$x$为根节点时的答案. 如果$d[i] \geq g[i]$,则我们可以确定,以$i$为子树,对于$x$为根时的答案贡献为$1$…
洛谷题面传送门 点分治 hot tea. 首先考虑什么样的点能够对以 \(u\) 为根的答案产生 \(1\) 的贡献.我们考虑以 \(u\) 为根对整棵树进行一遍 DFS.那么对于一个点 \(v\),我们记其 \(mn_v\) 为其子树内距离其最近的叶子,\(dep_v\) 为 \(u\) 到 \(v\) 的距离,那么如果 \(mn_v\ge dep_v\),那么对于任何一个 \(v\) 子树内的叶子 \(w\),如果 Bessie 选择从 \(w\) 逃出且我们在距离 \(v\) 最近的叶子处…
P4186 [USACO18JAN]Cow at Large G(树形DP) Luogu4186 设dp[i]表示i点需要放多少个农民.则有 \(if(near[i]-dep[i]<=dep[i]-1)\ dp[i]=1;\) \(else\ dp[i]=\sum dp[son[i]]\) AC代码…
Description: 贝茜被农民们逼进了一个偏僻的农场.农场可视为一棵有 \(N\) 个结点的树,结点分别编号为 \(1,2,\ldots, N\) .每个叶子结点都是出入口.开始时,每个出入口都可以放一个农民(也可以不放).每个时刻,贝茜和农民都可以移动到相邻的一个结点.如果某一时刻农民与贝茜相遇了(在边上或点上均算),则贝茜将被抓住.抓捕过程中,农民们与贝茜均知道对方在哪个结点. Hint: \(n \le 7*10^4\) Solution: 很有趣的题 题解大多是点分治做法 但是由于…
思路是覆盖子树,我们发现,农民想截住牛的最优策略是不断向上来尽可能地覆盖更大的子树 我们想要尽早地覆盖一个子树,一个显然的贪心是在这个子树中选取深度最小的一个放农民 如果我们在一个点放置了农民,那么其他点也会被覆盖,所有这个农民能够覆盖的叶子都不需要再放农民了 抽象出来,对于每个叶节点,都有一个深度,我们把叶节点按深度排序,然后每次选取深度最浅的点打标记,然后枚举每个点,把这个点能覆盖的点全部删去 那么我们怎样支持这样一种操作呢,我们可以用一个$set$,每次取出$s.begin$,考虑它是否能…
题目大意:有一只狐狸从给定的S点开始逃跑(出发),向叶节点移动以逃离这棵树,叶节点可能出现农民去抓捕狐狸,当农民和狐狸出现在同一个节点的时候,狐狸会被抓住,农民和狐狸移动速度相同,求抓捕狐狸所需要的最少农民数 显然,当 u 节点的子树内存在一叶节点 i 满足deep[i]-deep[u]<=deep[u]时,说明 u 的子树能被守住 即农民从 i 移动到 u 所需要的时间小于等于狐狸从出发点移动到 u 的时间 第一遍dfs预处理出每个节点的深度dep,以及每个节点的子树内深度最小的叶节点的深度m…
题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires…
题面 贝茜被农民们逼进了一个偏僻的农场.农场可视为一棵有N个结点的树,结点分别编号为 1,2,-,N .每个叶子结点都是出入口.开始时,每个出入口都可以放一个农民(也可以不放).每个时刻,贝茜和农民都可以移动到相邻的一个结点.如果某一时刻农民与贝茜相遇了(在边上或点上均算),则贝茜将被抓住.抓捕过程中,农民们与贝茜均知道对方在哪个结点. 请问:对于结点 i\((1\leq i\leq N)\),如果开始时贝茜在该结点,最少有多少农民,她才会被抓住. 分析 先考虑问题的简化版,对于给定的起点s求出…
https://www.luogu.org/problemnew/show/P3611 二分答案+优先队列 二分O(logn) 判一次正确性O(nlogn) 总体O(nlognlogn) 为了让priority_queue变成小根堆,就把元素全部取相反数了. #include<iostream> #include<cstdio> #include<queue> using namespace std; inline int rd(){ ,f=;char c; :; +c…