pandas之系列操作(一)】的更多相关文章

1.读Excel: # coding=utf-8 import pandas as pd import pymysql sql_select =" xxxxx " con = pymysql.connect(host="xxxx", user="xxx", passwd="xxxx", db="xxxx", charset='utf8',port=5366) df1 = pd.read_excel(r'D:…
pandas的apply操作类似于Scala的udf一样方便,假设存在如下dataframe: id_part pred pred_class v_id 0 d [0.722817, 0.650064] cat,dog d1 1 5 [0.119208, 0.215449] other_label,other_label d2 需要把 v_id=d1 中,pred 与 pred_class 一一对应,需要将 pred 大于0.5的pred_class取出来作为新的一列,如果小于0.5则不取出来:…
Jquery全选系列操作(锋利的jQuery) <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>复选框应用</title> <scr…
Pandas的基础操作(一)——矩阵表的创建及其属性 (注:记得在文件开头导入import numpy as np以及import pandas as pd) import pandas as pd import numpy as np #创建一个Pandas序列 s = pd.Series([1, 3, 6, np.nan, 44, 1]) # print(s) # 0 1.0 # 1 3.0 # 2 6.0 # 3 NaN # 4 44.0 # 5 1.0 # dtype: float64…
一.Pandas的数据操作 0.DataFrame的数据结构 1.Series索引操作 (0)Series class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). #带轴标签的一维ndarray(包括时间序列). Labels need not be unique but must be a…
pandas的拼接操作 pandas的拼接分为两种: 级联:pd.concat, pd.append 合并:pd.merge, pd.join import pandas as pd import numpy as np from pandas import DataFrame,Series 一. 使用pd.concat()级联 pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数: objs axis=0 keys join='outer' / 'i…
C#对字典Dictionary 的添加,遍历,移除系列操作: //一.创建泛型哈希表,然后加入元素 Dictionary<string, string> oscar = new Dictionary<string, string>(); oscar.Add("哈莉?贝瑞", "<死囚之舞>"); oscar.Add("朱迪?丹奇", "<携手人生>"); oscar.Add(&q…
pandas的拼接操作 #重点 pandas的拼接分为两种: 级联:pd.concat, pd.append 合并:pd.merge, pd.join 0. 回顾numpy的级联 import numpy as np import pandas as pd from pandas import Series,DataFrame ============================================ 练习12: 生成2个3*3的矩阵,对其分别进行两个维度上的级联 ========…
数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表格数据 6. 数据的分类处理 / 分组 7. 高级数据聚合 8. 数据加载 9. 透视表 10. 交叉表 1. 替换操作 替换操作可以同步作用于Series和DataFrame中 创建df表格数据: import numpy as np import pandas as pd from pandas…
pandas 写csv 操作 def show_history(self): df = pd.DataFrame() df['Time'] = pd.Series(self.time_hist) df['BG'] = pd.Series(self.BG_hist) df['CGM'] = pd.Series(self.CGM_hist) df['CHO'] = pd.Series(self.CHO_hist) df['insulin'] = pd.Series(self.insulin_hist…