Tensorflow的Queue读取数据机制】的更多相关文章

参考链接:http://www.sohu.com/a/148245200_115128…
TensorFlow 中可以通过三种方式读取数据: 一.通过feed_dict传递数据: input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.multiply(input1, input2) with tf.Session() as sess: feed_dict={input1: [[7.,2.]], input2: [[2.],[3.]]} print(sess.run(out…
大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV 文件中读取数据并在训练之前对数据进行预处理. 本节将采用哈里森和鲁宾菲尔德于 1978 年收集的波士顿房价数据集(http://lib.stat.cmu.edu/datasets/boston),该数据集包括 506 个样本场景,每个房屋含 14 个特征: CRIM:城镇人均犯罪率 ZN:占地 2…
紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecord…
一.tensorflow读取机制图解 我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率. 解决这个问题方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示: 读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了.这样就可以解决GPU因为IO而空闲的问题! 在tensorflow中,为了方便…
低效的IO方式 最近通过观察PAI平台上TensoFlow用户的运行情况,发现大家在数据IO这方面还是有比较大的困惑,主要是因为很多同学没有很好的理解本地执行TensorFlow代码和分布式云端执行TensorFlow的区别.本地读取数据是server端直接从client端获得graph进行计算,而云端服务server在获得graph之后还需要将计算下发到各个worker处理(具体原理可以参考视频教程-Tensorflow高级篇:https://tianchi.aliyun.com/compet…
低效的IO方式 最近通过观察PAI平台上TensoFlow用户的运行情况,发现大家在数据IO这方面还是有比较大的困惑,主要是因为很多同学没有很好的理解本地执行TensorFlow代码和分布式云端执行TensorFlow的区别.本地读取数据是server端直接从client端获得graph进行计算,而云端服务server在获得graph之后还需要将计算下发到各个worker处理(具体原理可以参考视频教程-Tensorflow高级篇:https://tianchi.aliyun.com/compet…
TensorFlow程序读取数据一共有3种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管道从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 一 预加载数据 import tensorflow as tf x1 = tf.constant([2,3,4]) x2 = tf.constant([4,0…
关于TensorFlow读取数据,官网给出了三种方法: 供给数据(Feeding):在TensorFlow程序运行的每一步,让python代码来供给数据. 从文件读取数据:在TensorFlow图的起始,让一个输入管线从文件中读取数据. 预加载数据:在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yeild 使用更为简洁).但是如果数据量较…
Tensorflow 数据读取有三种方式: Preloaded data: 预加载数据,在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). Feeding: Python产生数据,再把数据喂给后端.TensorFlow程序运行的每一步, 让Python代码来供给数据. Reading from file: 从文件中直接读取,在TensorFlow图的起始, 让一个输入管线从文件中读取数据. (https://www.cnblogs.com/jyxbk/p/77…