BZOJ3944 Sum 数论 杜教筛】的更多相关文章

原文链接http://www.cnblogs.com/zhouzhendong/p/8671759.html 题目传送门 - BZOJ3944 题意 多组数据(组数<=10). 每组数据一个正整数$n(n\leq 10^{10})$. 让你求$\sum_{i=1}^{n}\varphi(i)$以及$\sum_{i=1}^{n}\mu(i)$. 题解 杜教筛模版题. 杜教筛学习->传送门 代码 #include <bits/stdc++.h> using namespace std;…
BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. 需要使用杜教筛. 杜教筛可以在非线性时间里求出一个积性函数的前缀和. 借这里先写一些杜教筛内容...或许以后会补总结(雾 最开始扔积性函数: \(\mu(n)\),莫比乌斯函数 \(\phi(n)\),欧拉函数. \(d(n)\),约数个数. \(\sigma(n)\),约数和函数. \(\eps…
传送门 题意: 思路:直接上杜教筛. 知道怎么推导就很简单了,注意预处理的范围. 然后我因为预处理范围不对被zxyoi教育了(ldx你这个傻×两倍常数活该被卡TLE) 喜闻乐见 代码: #include<bits/stdc++.h> #define ri register int using namespace std; const int N=7500005,lim=7500000; typedef long long ll; namespace Sieve{ int pri[N],tot=…
[BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i=1}^n\mu(i)\] 随便找个函数\(g\)和\(\mu\)做狄利克雷卷积 \[(g*\mu)(i)=\sum_{d|i}\mu(d)g(\frac{i}{d})\] 对这个玩意求前缀和 \[\sum_{i=1}^n\sum_{d|i}\mu(d)g(\frac{i}{d})\] 把\(d\)给提出…
4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{i\mid n}\sum_{j\mid m}[(i,j)=1]\) 反演得到 \[ \sum_{d=1}^n \mu(d) (g(\frac{n}{d}))^2 \\ g(n) = \sum_{i=1}^n \sigma_0(i) \] 杜教筛\(\mu \ \sigma_0\)的前缀和 当然和前面…
4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值:   其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Ou…
3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4930  Solved: 1313[Submit][Status][Discuss] Description   Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问   Output 一共T行,每行两个用空格分隔的数ans1,ans2   Sample Input 6 1 2 8 13 30 2333 Sample Outp…
求$$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$$,其中$f(x)$表示$x$的约数个数,$0\leq n\leq 10^9$,答案膜$10^9+7$ 题解 首先有个妙不可言(被hjw污染了)的结论:$$f(nm)=\sum\limits_{i|n}\sum\limits_{j|m}[gcd(i,j)=1]$$ 证明:咕 那么大力推一波式子: $$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f(ij)$…
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑N​j=1∑N​d(ij) N<=109N<=10^9N<=109 题目分析 有这样一个结论 d(ij)=∑x∣i∑y∣j[(x,y)==1]d(ij)=\sum_{x|i}\sum_{y|j}[(x,y)==1]d(ij)=x∣i∑​y∣j∑​[(x,y)==1]这道题就是下面这道题的数据增强版,那么这个结论的证明…
题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部为\(a\),虚部为\(b\). 定义\(f(n)\)为整数\(n\)的所有实部大于\(0\)的约数的实部之和. 给定正整数\(n\),求出\(\sum_{i=1}^nf(i)\)对\(1004535809\)取模后得到的值. \(n\leq {10}^{10}\) 题解 以前看到一个数论题就是反演…