原文链接:https://developers.google.com/machine-learning/crash-course/regularization-for-sparsity/ 1- L₁正则化 稀疏矢量通常包含许多维度.创建特征组合会导致包含更多维度.由于使用此类高维度特征矢量,因此模型可能会非常庞大,并且需要大量的 RAM. 在高维度稀疏矢量中,最好尽可能使权重正好降至 0.正好为 0 的权重基本上会使相应特征从模型中移除. 将特征设为 0 可节省 RAM 空间,且可以减少模型中的…
原文链接:https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity 正则化指的是降低模型的复杂度以减少过拟合. 1- L₂正则化 泛化曲线:显示的是训练集和验证集相对于训练迭代次数的损失. 如果说某个模型的泛化曲线显示:训练损失逐渐减少,但验证损失最终增加.那么就可以说,该模型与训练集中的数据过拟合.根据奥卡姆剃刀定律,或许可以通过降低复杂模型的复杂度来防止过拟合,这种原则称…
机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学习入门01 - 框架处理(Framing) https://www.cnblogs.com/anliven/p/10252938.html 机器学习基本术语. 了解机器学习的各种用途. 机器学习入门02 - 深入了解机器学习 (Descending into ML) https://www.cnbl…
MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_nld=1&plg_uin=1&plg_auth=1&plg_nld=1&plg_usr=1&plg_vkey=1&plg_dev=1 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softm…
MNIST机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门有MNIST. MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 它也包含每一张图片对应的标签,告诉我们这个是数字几.比如,…
Andrew Ng机器学习课程13 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言:主要从一般的角度介绍EM算法及其思想,并推导了EM算法的收敛性.最后用一般的EM算法回顾了混合高斯模型的求解过程,并推导了通过EM算法求解混合高斯模型参数的过程.视频笔记会通过增补内容加以补充. 2015-9-30 艺少…
上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题. 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三个类别:偏瘦.正常.偏胖. 处理流程如下: 1.收集数据 2.构建神经网络 3.训练网络 4.保存和消费模型 详细步骤如下: 1.收集数据 对于一个复杂的业务数据,在实际应用时应该是通过收集取得数据,本文的重点不在数据收集,所以我们将制造一批标准数据来进行学习. 关于人体的胖瘦问题,有一个BMI算法…
L1.L2范式及稀疏性约束 假设需要求解的目标函数为: E(x) = f(x) + r(x) 其中f(x)为损失函数,用来评价模型训练损失,必须是任意的可微凸函数,r(x)为规范化约束因子,用来对模型进行限制,根据模型参数的概率分布不同,r(x)一般有:L1范式约束(模型服从高斯分布),L2范式约束(模型服从拉普拉斯分布):其它的约束一般为两者组合形式. L1范式约束一般为: L2范式约束一般为: L1范式可以产生比较稀疏的解,具备一定的特征选择的能力,在对高维特征空间进行求解的时候比较有用:L…
在此动手实践中,我们将在Azure机器学习Studio中一步步地开发预测分析模型,首先我们从UCI机器学习库的链接下载普查收入数据集的样本并开始动手实践: http://archive.ics.uci.edu/ml/datasets/Census+Income. 然后我们在此数据集上开发和训练预测分析模型,并将预测分析模型作为web服务发布至云端给其他程序调用,整个过程大致包含下几个步骤: 下载.处理和上传收入普查的数据集: 创建一个新的Azure机器学习实验: 训练和评价一个预测模型: 从公共…
目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell sklearn.neighbors.NearestNeighbors 参数: 方法: 基础用法 print(__doc__) from sklearn.neighbors import NearestNeighbors import numpy as np X = np.array([[-, -], [-…
新教程内容太繁复,有空再看看,这节看的还是老教程: http://ufldl.stanford.edu/wiki/index.php/%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95%E4%B8%8E%E7%A8%80%E7%96%8F%E6%80%A7 之前讨论的神经网络是在有监督的学习中的应用,而自编码神经网络是一种无监督的学习算法.它的特点是使用了BP,并且把输入值当作目标值. 当隐藏层单元的个数小于输入的个数时,相当于完成了降维,而当输出时,又相…
目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本时有类别标签的.现在假设我们只有一个没带类别标签的训练样本集合  ,其中  .自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如  .下图是一个自编码神经网络的示例. 自编码神经网络尝试学习一个 的函数.换句话说,它尝试逼近一个恒等函数,从而使得  接近于输入  .恒等函数虽然看上去不太有学习的意义,但是当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从输入数据…
时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数,以及一些简单的算法--kNN算法.决策树算法等. 那么,今天就用聚类和K-Means算法来结束我们这段机器学习之旅. 1. 聚类 1.1 什么是聚类 将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类.由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他…
机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题.简单的说,k-近邻算法 采用了测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.控件复杂度高 适用数据范围:数值型和标称型 首先我们来理解它的工作原理: 存在一个样本数据集(训练集),并且我们知道每一数据与目标变量的对应关系,输入没有标签的新数…
机器学习入门项目 如果你和我一样是一个机器学习小白,这里我将会带你进行一个简单项目带你入门机器学习.开始吧! 1.项目介绍 这个项目是针对鸢尾花进行分类,数据集是含鸢尾花的三个亚属的分类信息,通过机器学习来省成一个模型,实现自动分类.这个项目属于多分类问题,监督学习. 有以下步骤: (1)导入数据 (2)概述数据 (3)数据可视化 (4)评估算法 (5)实施预测 2.导入数据 2.1 导入类库 代码如下: # 导入类库 from pandas import read_csv from panda…
机器学习入门:极度舒适的GBDT拆解 本文旨用小例子+可视化的方式拆解GBDT原理中的每个步骤,使大家可以彻底理解GBDT Boosting→Gradient Boosting Boosting是集成学习的一种基分类器(弱分类器)生成方式,核心思想是通过迭代生成了一系列的学习器,给误差率低的学习器高权重,给误差率高的学习器低权重,结合弱学习器和对应的权重,生成强学习器. Boosting算法要涉及到两个部分,加法模型和前向分步算法. 加法模型就是说强分类器由一系列弱分类器线性相加而成.一般组合形…
稀疏性如何为AI推理增加难度 NVIDIA Ampere架构使数学运算加倍,以加速对各种神经网络的处理. 如果曾经玩过游戏Jenga,那么将有一些AI稀疏感. 玩家将木制积木交叉成一列.然后,每个玩家轮流小心地移开一个障碍物,而不会倾倒立柱. 它从一开始就很容易,但是变得越来越毛茸茸,直到失败的玩家拔出一个障碍物,导致塔楼坠毁. 多年来,研究人员一直在努力地利用数字打积木,以利用稀疏性来加速AI.他们尝试从神经网络中提取尽可能多的不需要的参数-而不破坏AI的超高精度. 目标是减少深度学习所需的矩…
cuSPARSELt开发NVIDIA Ampere结构化稀疏性 深度神经网络在各种领域(例如计算机视觉,语音识别和自然语言处理)中均具有出色的性能.处理这些神经网络所需的计算能力正在迅速提高,因此有效的模型和计算至关重要.神经网络剪枝(删除不必要的模型参数以生成稀疏网络)是一种在保持准确性的同时降低模型复杂性的有用方法. 为了利用细粒度的网络剪枝,NVIDIA Ampere GPU架构引入了细粒度的结构稀疏性的概念.在NVIDIA A100 GPU上,结构显示为2:4模式:每四个元素中至少有两个…
项目开发环境为Visual Studio 2019 + .Net 5 创建新项目后首先通过Nuget引入相关包: SciSharp.TensorFlow.Redist是Google提供的TensorFlow开发库,是采用C语言开发的动态链接库(DLL): TensorFlow.NET采用C#语言对C语言的库进行封装,提供.NET调用接口: TensorFlow.Keras是一个高级工具类,对建模和训练过程进行封装,提供简便接口. 通过下列语句对库进行引用: using Tensorflow; u…
曾经学习过一段时间ML.NET的知识,ML.NET是微软提供的一套机器学习框架,相对于其他的一些机器学习框架,ML.NET侧重于消费现有的网络模型,不太好自定义自己的网络模型,底层实现也做了高度封装. 最近想从底层学习一下机器学习的相关知识,经过初步筛选,计划定位于python + pytorch这个方向入手,经过一段时间的学习,我发现由于对python语言不太熟悉,导致实践起来比较困难,先不说机器学习相关的代码,光周边代码就搞得焦头烂额了.想要下决心好好修炼一下python必然不是一朝一夕的事…
回归分析用于分析输入变量和输出变量之间的一种关系,其中线性回归是最简单的一种. 设: Y=wX+b,现已知一组X(输入)和Y(输出)的值,要求出w和b的值. 举个例子:快年底了,销售部门要发年终奖了,销售员小王想知道今年能拿多少年终奖,目前他大抵知道年终奖是和销售额(特征量)挂钩的,具体什么规则不清楚,那么他大概有两个方法解决这个问题: 1.去问老板,今年的分配规则是什么.[通过算法解决问题] 2.去向同事打听他们的销售额和奖金情况,然后推算自己能拿多少.[通过数据解决问题] 我们当然选择第二种…
上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出. 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量存在几次方的分量,所以我们采用一个神经网络去定义一个函数. 我们假设只有一个输入.一个输出,神经网络模型结构类似上图,其中蓝色的路径仍为线性模型,红色路径为阶跃函数,是非线性模型. 以上模型只有三个神经元,设输入为x,隐藏层为h,激活函数输出为a,最终输出为y,整个数据计算流情况如下: 以上共有6+…
从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png.tar.gz文件 文件夹内包括两个文件夹:training和validation,其中training文件夹下包括60000个训练图片validation下包括10000个评估图片,图片为28*28像素,分别放在0~9十个文件夹中. 程序总体流程和上一篇文章介绍的BMI分析程序基本一致,毕竟都是多元…
"如果一个算法在MNIST上不work,那么它就根本没法用:而如果它在MNIST上work,它在其他数据上也可能不work". -- 马克吐温 上一篇文章我们实现了一个MNIST手写数字识别的程序,通过一个简单的两层神经网络,就轻松获得了98%的识别成功率.这个成功率不代表你的网络是有效的,因为MNIST实在是太简单了,我们需要更复杂的数据集来检验网络的有效性!这就有了Fashion-MNIST数据集,它采用10种服装的图片来取代数字0~9,除此之外,其图片大小.数量均和MNIST一致…
本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集. 程序流程如下: 1.准备样本数据 2.构建卷积神经网络模型 3.网络学习(训练) 4.消费.测试 除了网络模型的构建,其它步骤都和前面介绍的普通神经网络的处理完全一致,本文就不重复介绍了,重点讲一下模型的构建. 先看代码: /// <summary> /// 构建网络模型 /// </summary> private Model BuildModel() { // 网络参数 float scale =…
随着网络越来约复杂,训练难度越来越大,有条件的可以采用GPU进行学习.本文介绍如何在GPU环境下使用TensorFlow.NET. TensorFlow.NET使用GPU非常的简单,代码不用做任何修改,更换一个依赖库即可,程序是否能运行成功主要看环境是否安装正确,这篇文章重点介绍的也就是环境的安装了. CUDA和cuDNN的安装都比较容易,重点是要装对版本. 1.确认安装版本 首先电脑得有一块NVIDIA的显卡! 在桌面右键选择NVIDIA控制面板,在程序左下角点击 :系统信息. 首先要确认显卡…
Cesium入门13 - Extras - 附加内容 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ 剩下的代码只是添加了一些额外的可视化选项.类似于我们以前与HTML元素的交互,我们可以将侦听器函数附加到切换阴影和neighborhood 多边形可见性. 让我们开始创建一个简单的方法来切换neighborhood多边形.一般来说,我们可以通过Entity.show用实体设置可见性来隐藏实体.但是,这只为单个…
稀疏矢量通常包含许多维度.创建特征组合会导致包含更多维度.由于使用此类高维度特征矢量,因此模型可能会非常庞大,并且需要大量的 RAM. 在高维度稀疏矢量中,最好尽可能使权重正好降至 0.正好为 0 的权重基本上会使相应特征从模型中移除. 将特征设为 0 可节省 RAM 空间,且可以减少模型中的噪点. 以一个涵盖全球地区(不仅仅只是涵盖加利福尼亚州)的住房数据集为例.如果按分(每度为 60 分)对全球纬度进行分桶,则在一次稀疏编码过程中会产生大约 1 万个维度:如果按分对全球经度进行分桶,则在一次…
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 到 1 之间(不包括 0 和 1)的概率值,而不是确切地预测结果是 0 还是 1. 1- 计算概率 许多问题需要将概率估算值作为输出.逻辑回归是一种极其高效的概率计算机制,返回的是概率(输出值始终落在 0 和 1 之间).可以通过如下两种方式使用返回的概率: “按原样”:“原样”使用返回的概率(例如…
目录 0 前置知识 什么是机器学习 机器学习的算法 机器学习首先要解决的两个问题 一些基本概念 数据集介绍 1 正文 数据提取 数字型 文本型 数据读取 0 前置知识 什么是机器学习 通过简单示例来理解什么是机器学习 机器学习的算法 属于监督式学习的算法有:回归模型,决策树,随机森林,K近邻算法,逻辑回归等算法 属于无监督式学习的算法有:关联规则,K-means聚类算法等 属于强化学习的算法有:马尔可夫决策过程 机器学习的算法——用最通俗的例子去理解 通俗易懂机器学习 图解十大经典机器学习算法入…